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The structural relations established among agents influence the performance of decentralized service dis-
covery process in Multi-Agent Systems (MAS). Moreover, distributed systems should be able to adapt their
structural relations to changes in environmental conditions. In this paper, we present a Service-Oriented
MAS where agents initially self-organize their structural relations based on the similarity of their services.
During the service discovery process, agents integrate a mechanism that facilitates the self-organization of
their structural relations in order to adapt the structure of the system to the service demand. This mech-
anism facilitates the task of decentralized service discovery and improves its performance. Each agent has
local knowledge about its direct neighbors and the queries received during discovery processes. With this
information, an agent is able to analyze its structural relations and decide when it is more appropriate to
modify its direct neighbors and select the most suitable acquaintances to replace them. The experimental
evaluation shows how this self-organization mechanism improves the overall performance of the service
discovery process in the system when the service demand changes.
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1. INTRODUCTION
Nowadays, there is a trend towards large-scale, complex, and highly-dynamic sys-
tems for dealing with new business models and requirements [Werbach 2000]. Service-
Oriented Multi-Agent Systems (SOMAS) are considered to be a technology that sup-
ports these new models when there is a large number of entities offering services that
change frequently and that look for other entities to collaborate with in order to obtain
a resource to deal with a complex goal [Huhns 2002; Huhns and et al. 2005; Brazier
et al. 2009]. SOMAS integrate Service-Oriented Computing (SOC) and Multi-Agent
System (MAS) technologies where: (i) service standards provide an infrastructure for
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the interaction among agents; (ii) MAS offer a more general and complex notion of
Service-Oriented Architectures (SOA); and (iii) intelligent and social capabilities of
agents allow complex systems to be defined.

In SOMAS, services are considered to be the basic building blocks of complex busi-
ness applications. Services are platform-independent and can be described, discovered,
and composed dynamically. These features make services suitable for giving support
to the high rate of change in business demands. However, in order to provide more
flexibility in the context of business applications, services should be both reactive and
proactive. They should be aware of what is happening in their environment and also
be able to perform local actions based on their observations. Agents are able to learn
from previous experiences and update and reason about their information in order
to improve their decisions and achieve their goals. Moreover, SOMAS should provide
mechanisms to provide higher levels of functionality and to facilitate the emergence of
new services in a dynamic way by exploiting existing services.

Service discovery is a challenging task for SOMAS when changes in the environment
occur (i.e., distribution of service demand, agents that leave and enter the system) and
there is no central repository responsible for the management of resources and the
maintenance of the system structure. Therefore, each agent should be able to locate
another agent that provides the required service and to update its structural links
to obtain more useful relations. The success of the service discovery process relies on
the collaboration of other agents in the system [Del Val et al. 2012b] and the self-
organization of the structural relations between agents [Abdallah and Lesser. 2007;
Gaston and desJardins 2005; Kota et al. 2012].

In systems where the environmental conditions or requirements change and nodes
only have local knowledge, the inclusion of self-organization mechanisms offers ad-
vantages such as increased scalability and robustness and a reduced need for com-
munication. In this paper, we present a decentralized service discovery system that
integrates a mechanism to facilitate the self-organization of the structural relations
established among agents in order to adapt the system structure to the service de-
mand. The self-organization mechanism considers local knowledge about interactions
with direct neighbors during the discovery process. With this information, each agent
is able to reason about when it is more appropriate to modify its structural relations
with its direct neighbors and determine which acquaintances are the most suitable to
replace them. Some of the scenarios where the proposal presented here can be applied
are: file sharing P2P systems [Sun and Garcia-Molina 2004], streaming applications
[Lin et al. 2009], overlay routing [Blanc et al. 2005], network of services [ITAO et al.
2001; Viroli and Zambonelli 2010], and sensor networks [Fernandez-Marquez et al.
2012] among others.

The rest of the paper is organized as follows: Section 2 presents a review of re-
lated work about decentralized search of resources and self-organization proposals.
Section 3 describes the context where the proposed service discovery process and
self-organization mechanism are going to be applied. In Section 4, we present our
formal model for decentralized service discovery which underpins our proposed self-
organizing mechanism. Section 5 explains the service discovery process and the self-
organization of the structural relations between agents. A set of experiments to vali-
date the structural self-organization mechanisms are presented in Section 6. Finally,
some conclusions and final remarks are presented in Section 7.

2. RELATED WORK
Nowadays, decentralized systems appear as an alternative to traditional centralized
approaches. The evolution of the Internet and communication, and the emergence of
new market models have generated new requirements such as decentralized resource
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search or dynamic self-organization for changes in the environment in order to improve
system performance. In large-scale systems where there is a lack of global knowledge,
decentralized search and dynamic self-organization generate new challenges such as
dealing with uncertainty or action coordination based only on local states. These chal-
lenges cannot be tackled by traditional approaches [(ed.) di Marzo Serugendo et al.
2011; Biskupski et al. 2007]. In this section, we present several works that deal with
decentralized service discovery and self-organization in distributed systems.

2.1. Search in Unstructured Environments
Search approaches that are commonly used in decentralized systems (where all the
entities are considered to be equal and there is an arbitrary topology) are based on
blind or informed algorithms. Blind algorithms do not consider any information about
resource locations, and they use flooding or random strategies that can overload the
system with the traffic generated during the search process [Ouksel et al. 2004; Zhong
2006]. To prevent the generation of traffic, informed algorithms that take into account
local information have been proposed [Crespo and Garcia-Molina 2002; Basters and
Klusch 2006]. The information is about their direct neighbors or statistics from previ-
ous searches which is stored in local registries. These algorithms require a period of
time to collect information that can improve the search. If links between peers change
frequently, statistical information that is stored in local indexes could become useless.
Also, some of the heuristics that are used to guide the search process could overload
some peers and leave other potential peers without traffic.

There are other informed approaches where the underlying structure of the system
is loosely structured using certain criteria. This facilitates the search process [Zhang
et al. 2004; Bianchini et al. 2009]. Initially, agents are connected randomly and they
use a reorganization algorithm to group agents with similar services together. In order
to avoid isolated clusters of agents, these algorithms establish a percentage of simi-
lar and dissimilar agents that are in the neighborhood of the agent. For distributed
searches, agents use algorithms that are based on similarity; however, if they do not
find any similar service, they use random algorithms. The main disadvantage of these
approaches is the high cost of communication required to organize the entities into
communities and the consideration of a fixed number of neighbors that are similar
and dissimilar to the agent, which reduces the flexibility of the system.

Some of the approaches that use blind or informed strategies to locate resources in
decentralized systems consider Semantics. We understand Semantics to be the intro-
duction of machine interpretable languages in the descriptions of resources. There-
fore, Semantics plays an important role in reducing the participation of the user in
the service discovery process. Specifically, the inclusion of Semantics in the service
discovery process implies the use of ontologies and semantic markup languages such
as OWL-S 1, SAWSDL 2, or WSMO 3. Semantic markup languages provide a formal
and explicit specification of shared concepts. These languages facilitate the descrip-
tion of services and queries with a logic formalization. Markup languages exploit on-
tologies to facilitate sharing, reuse, composition, and mapping, which makes services
computer-interpretable. As a consequence, agents can reason about services to provide
automatic service discovery, execution, and composition and inter-operation [McIlraith
et al. 2001]. With regard to service discovery, Semantics provides matching flexibility
and accuracy by considering those concepts that have the same meaning to be similar
concepts even though they are syntactically different. In the context of decentralized

1http://www.w3.org/Submission/OWL-S/ visited:26/03/2013
2http://www.w3.org/2002/ws/sawsdl/ visited:26/03/2013
3http://www.w3.org/Submission/WSMO/ visited:26/03/2013
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systems for resource location, Semantics has been included in several ways: as one of
the criteria to organize the network structure, to provide new ways of resource loca-
tion, and to improve the accuracy of the search results [Haase et al. 2008; Bianchini
et al. 2009; Ding et al. 2010; Del Val et al. 2012c; Shaikh et al. 2012; Kontominas et al.
2013].

2.2. Self-Organization
Emergence and organization are close concepts that are used in the context of com-
plex, adaptive systems. We consider emergence to be the phenomenon in which global
behavior arises from the individual actions of its components. These elementary com-
ponents do not have a global view of the whole system (i.e., the properties of the system
are not present in its components). From our point of view, the concept of organization
involves an ordered relation among the components. Systems improve their order by
making local decisions without a central control that decides how the system evolves.
This behavior can be optimized and usually tends to an equilibrium state.

2.2.1. Emergence. Emergence is considered to be the phenomenon where global behav-
ior arises from the interactions between the local parts of the system [Wolf and Holvoet
2005; Fernndez et al. 2014]. An example of emergence in decentralized systems such
as P2P is the use of Ant Colony Optimization algorithms [Caro et al. 2005; Forestiero
et al. 2009; Leito 2013]. The inspiration for these algorithms is the behavior of ants
and, specifically, a principle called stigmergy. Stigmergy is an indirect mechanism of
communication that is based on the information that ants leave in the environment.
This information is taken into account by other ants in order to make decisions. Works
based on stigmergy propose a hybrid protocol for routing and for improving the effi-
ciency of the paths. This protocol combines reactive ants (which use broadcast mecha-
nisms for route discovery and bootstrap their routing tables) and proactive ants (which
use unicast mechanisms based on probabilities for system maintenance).

2.2.2. Organization. Organization is considered to be the mechanism that enables a
system to arrange its organization at run-time, without explicit external commands.
Starting from entities that are structured in a sub-optimal organization or that are not
organized at all, an organized system is able to form a specific organization in order
to pursue a well-defined goal [Kota et al. 2012]. The main issue in organization is to
determine what the best mechanism is to reorganize the current structure through
the execution of local actions in order to achieve the desirable behavior when there is a
high degree of uncertainty in the system. Therefore, researchers from different areas
have proposed mechanisms that deal with the problem of self-organization [Serugendo
et al. 2005]. Specifically, we review some of the approaches proposed in Peer-to-Peer
and Multi-Agent Systems.

In P2P approaches, there are works where peers consider different criteria to im-
prove the organization of their structural relations. Wang et al. [Wang 2011] present
a P2P system where peers use trust values about their neighbors in order to decide
which local actions are more appropriate in order to improve the structure of the sys-
tem. Semantic information and the trust in each peer of the network are taken into
account to form groups of peers with similar domains. The system has a hierarchical
structure where expert peers contain information about the set of peers that have infor-
mation related to their domain. To build this structure and acquire knowledge about
the environment, a broadcast mechanism and trust values are used by the peers. How-
ever, the hierarchical organization in peers and expert peers can overload the expert
peers since they initially receive and process all the queries and the system is more
vulnerable to deliberate attacks. Condie et. al also consider trust in order to adapt
a random network of peers [Condie et al. 2004]. A peer i considers local trust values
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with respect to each peer that it has interacted with. A local trust values represents
the number of requests that have been successfully solved by peer j (i.e., the peer that
interacts with i). If a peer i has an acquaintance j that has a higher trust value than
one of its current neighbors, then it changes its current link for a new one with peer j.
In open environments where the peers that are part of the system change it is difficult
to establish these successfully because with new peers, peers do not have information
about previous direct interactions. There are other approaches that do not use trust
mechanisms; instead, they use mechanisms based on tags, gossip, and ostracism to
change the structure of the network to avoid relationships with untrustworthy neigh-
bors [Griffiths and Luck 2010; Savarimuthu et al. 2011].

There are still other approaches that instead of considering trust they consider sim-
ilarity to decide when the local structure of peers should be reorganized. Raftopoulou
and Petrakis present an iCluster overlay network that manages text files. The ini-
tial structure of peers is random [Raftopoulou and Petrakis 2008]. The system has two
global parameters that establish the number of long-links (links with dissimilar peers)
and short-links (links with similar peers) that a peer should have. Periodically, each
peer evaluates its degree of internal clustering (degree of similarity of short-links). If
the degree of internal clustering is under a certain threshold, the peer initiates a reor-
ganization by sending a message to m of its neighbors in order to find other peers that
are similar enough to its interests and to replace its current links. One drawback of
this proposal is that nodes initially need to find possible candidates to create clusters
through random walks, which affects the success of the searches. Another drawback is
that the decision to consider reorganization of the structural links is done periodically
instead of when peers consider it to be more appropriate. Also, when peers cannot do
a search based on similarity, they use a k-flooding algorithm that increases the traffic
in the network. Something else that this approach does not consider is the inclusion
of semantic information. Nevertheless, there are other approaches that do consider
similarity based on the semantic description of the resources of the nodes of the net-
work. Al-Asfoor et al. propose an initial random structure where nodes self-organize
their neighbors by considering a First-In First-Out or semantic criteria [Al-Asfoor et al.
2012]. The authors conclude that a self-organization mechanism based on semantics
provides the best results. However, this criterion could divide the system into several
isolated clusters that provide similar resources.

Reinforcement Learning has been used in MAS to dynamically adapt the links of
agents by calculating a probability that is based on information related to its current
state, previous decisions, and environmental conditions [Einhorn and Mitschele-Thiel
2008]. In the self-organization mechanism presented by Abdallah et al., when an agent
receives a message, it updates its current state using a reinforcement algorithm and
decides whether or not is appropriate to stochastically reorganized its current links by
adding or removing neighbors [Abdallah and Lesser. 2007]. The reinforcement learn-
ing algorithm that is used in the decision-making process to update the behavior of
agents is called the Weighted Policy Learner (WPL). This gradient algorithm allows
agents to learn stochastic policies that make agents slow down learning when moving
away from a stable policy and speed up learning when moving towards a stable policy.
This approach improves previous proposals based on reinforcement learning [Peshkin
and Savova 2002] since it considers the dynamism of the network. Nevertheless, the
decision-making algorithm considers the reorganization of agent links based on a pre-
defined probability. Moreover, the decision of removing neighbors is also conditioned
by a constant that is dependent on the average degree of connection of the network.

There are other approaches that focus on cooperative problem-solving in organiza-
tions and how these organizations can be rearranged in order to improve their per-
formance as the environmental conditions and the organizational goals change [Kota
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et al. 2012; Kamboj and Decker 2007]. Many of these approaches rely on hierarchical
structures where agents change their relations in order to distribute their workload to
subordinates. The change of relations is based on a utility function that evaluates the
reorganization cost, the load of the agent, and the communication cost. However, some
of these models assume that all the agents are acquaintances of each other (a fully
connected network), which is not a realistic situation in open environments, and these
models also rely on a hierarchical structure that reduces the flexibility of the system.
There are other approaches that use self-organization mechanisms to provide a service
composition that deals with a specific goal [Khondoker et al. 2011; Nallur and Bahsoon
2012]. The two main drawback of these approaches is that: (i) they assume that there
is a global view of all the services available in the system, and (ii) also assume that
broadcast mechanisms are used.

In this article, we present a Service-Oriented MAS where the underlying structure
is a growing network. When an agent enters the system, it establishes a link with a set
of agents that are already present based on a probability that take into account the se-
mantic similarity of the attributes of the agents (i.e., the services that the agents offer).
Details can be found in [Del Val et al. 2012a]. The service discovery process carried out
by the agents in the system includes a self-organization mechanism to reorganize the
structural relations between agents when environmental conditions such as service
demand change. Our proposal attempts to improve the mentioned approaches above
with regard to structure, service discovery, and self-organization.

From the structural point of view, our system is not based on a hierarchical organiza-
tion. All the agents are considered to be equal. Our proposal differs from other propos-
als in the initial self-organization of the network. In the majority of the proposals for
decentralized service discovery, the initial structure of the network is random. In our
proposal, we present a growing network that is self-organized from the beginning since
the connections between new agents and agents that are already present in the system
are based on a probability that considers the semantic similarity of the attributes of
the agents (i.e., the services of the agents). The semantic service descriptions of the
services that the agents offer are public. The semantic similarity between semantic
service descriptions is calculated using a matching function that establishes the de-
gree of match between them. The initial network structure that is generated using a
self-organization criterion called homophily adapts to changes in the service demand
through self-organization mechanisms. Also, during the service discovery process, local
information is taken into account to create the initial structure and to self-organize the
structural links as service demand changes.

From the service discovery point of view, there is no initial period for acquiring
knowledge through flooding strategies. An agent does not maintain information about
routes that could change frequently in highly dynamic environments. Each agent only
maintains information about who its neighbors are and what services they offer. Ser-
vice discovery is not based on previous information or statistics that require a training
period in order to be reliable. It is based on the semantic similarity between the ser-
vice descriptions of the agents and the degree of connection of the agents. Similarity is
calculated by taking into account the semantic information of the agents and not just
keywords. We assume that the service descriptions and the degree of connection of an
agent is known by its direct neighbors.

From the self-organizing point of view, each agent takes advantage of the infor-
mation generated during its activity in the service discovery. With this information,
agents can reason about when it is more appropriate to consider a structural change
in its neighborhood. It is not necessary to have a flooding phase in order to obtain in-
formation for the self-organization process. In order to determine which acquaintances
might provide a beneficial relation, instead of using global knowledge or randomly se-
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Fig. 1. An example of a decentralized service discovery system. (a) Agent i establishes a link with two
similar agents k and j and with a dissimilar one n; Agent i only knows its direct neighbors k, j, and n. If
agent i needs to locate a service (i.e., rentalCar), it will forward the query to its most promising neighbor
(i.e., k) based on the homophily between the neighbor and the target agent (i.e., t) that should provide the
required service and the degree of the neighbor. (b) Agent i decides to reorganize its links and changes its
link with n (since it is not being used) for a link with a previously known acquaintance v.

lecting neighbor agents use the local view of the traffic of the system. The set of ac-
quaintances that an agent maintains is limited to a fixed number. The agents evaluate
the utility of their links by taking into account semantic information about services as
well as the information related to the traffic in the network.

3. SERVICE DISCOVERY SCENARIO
To illustrate in what the service discovery and the self-organization mechanism con-
sist of, we present the following scenario. Consider a network of services to be a form
of distributed computing system. This network contains different groups of semantic
web services that are provided by software agents as a part of an overlay network.
The agents offer services that are not appropriate for dealing with their goals. There-
fore, they must interact with other agents in order to achieve a task. However, the
agents only know their direct neighbors. In order to locate potential provider agents,
they need to start an efficient service discovery process that only requires a few steps.
Moreover, since we assume that the goals of agents changes over time, the service de-
mand changes and agents consider it to be more beneficial to change their structural
relations in order to reach the required provider agents in fewer steps.

The scenario in Figure 1 shows a network of agents that offer semantic web services
from different categories. The structural relations between these agents have been
established taking a homophily criterion into account. Homophily is a social princi-
ple that establishes that contacts between similar people occur at a higher rate than
among dissimilar people. Homophily implies distance in terms of social characteristics
that can be translated into network distance [McPherson et al. 2001]. In a structure
that is based on homophily, an individual has a higher probability of being connected
to similar individuals than to dissimilar ones. In the case of agent i, it has connections
with agents k and j (which offer similar services) and with agent n (which offers a dis-
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similar service). Note that agents that offer services from similar categories are repre-
sented in Figure 1 with similar colors. Agent i offers the service bookHotel; however, in
order to achieve one of its goals, it needs to locate an agent that offers a service similar
to rentalCar from the Transport category. At that moment, agent i creates a query q =
{i, rentalCar, Transport, TTL, ε path = {k}|k ∈ A} that consists of the following: the
identifier of the agent that creates the query; the required semantic service descrip-
tion; the semantic category associated to the service; the Time To Live (TTL), which
is the maximum number of times that the query can be forwarded; the threshold that
indicates the degree of similarity that an agent takes into account to stop the search;
and the set of agents that participate in the search process to reach the target agent.
If the query exceeds the TTL, it is considered to be a failure of the service discovery
process. Otherwise, the query is forwarded to one of the neighbors. It is assumed that
all the agents are collaborative and follow the same criterion to forward the queries.

In the scenario shown in Figure 1a, agent i should choose one of its neighbors,n,
j, or k, to forward the query q. In order to select the most promising neighbor, the
agent i considers: (i) the homophily between its neighbors and a fictitious agent
t = (rentalCar, Transport) that offers a service similar to the service that appears in
the query and that has a category that is similar to the category specified in the query
q; and (ii) the degree of connection of the neighbors. Assuming the values of homophily
that appear in Figure 1a and the degree of connection of each neighbor, agent i sends
the query to the most promising agent (i.e., agent k). This process is repeated until the
semantic similarity between a local service of an agent and the service in the query
is over a certain threshold ε or the query exceeds the TTL. In the described scenario,
the process ends when the query arrives to agent v (see Figure 1a). Afterwards, agent
i stores agent v in its local view as a possible candidate for establishing a future struc-
tural relation if some of its current relations are not being used. Since the number of
acquaintances is limited, an agent maintains an acquaintance in the acquaintance set
until it is completed. If the set is completed and a new acquaintance is considered to
be added to the set, an existing acquaintance is replaced by the new one based on its
utility estimation.

As time passes, service demand changes. Based on its local view of the system, agent
i realizes that the service demand has changed and that the link with agent n is not
being used to forward queries. However, it has an acquaintance v that connects to a set
of agents that offer services that are being demanded at that moment. Therefore, agent
i decides to break its current structural relation with n and establishes a new one with
an acquaintance that was discovered as a result of a previous service discovery process
((i, n)→ (i, v)) (see Figure 1b). This self-organization action reduces the path distance
towards agents that provide demanded services and also improves the success rate in
future discovery processes.

4. A FORMAL MODEL FOR SERVICE-ORIENTED MAS
In order to deal with the decentralized service discovery and self-organization process
described in the above scenario, we propose a decentralized model that is made up
of a set of autonomous agents that offer their functionality through a set of semantic
services. These agents have a reduced view of the global community: just a limited
number of direct neighbors are known and the rest of the network remains invisible
to them. We assume that each relation with a neighbor implies a maintenance cost;
therefore, agents have a limited number of relations. By simply considering local in-
formation, agents are able to locate the required service and update their structural
relations with other agents in order to adapt to changes in the service demand.
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DEFINITION 4.1. (System). The system is a tuple < A, L >, where A = {i, ..., n} is a
finite set of autonomous agents and, L ⊆ A×A is a set of links, where each link (i, j) ∈ L
indicates the existence of a direct relationship between agent i and j.

It is assumed that the knowledge relationship among agents is symmetric; therefore,
the network is an undirected graph. An agent controls its own information about (i)
the semantic services that it offers, (ii) the categories of its services, and (iii) local
knowledge about a set of neighbors and acquaintances.

DEFINITION 4.2. (Agent). The knowledge model of agent i is a tuple <
Si, C,ARi ,AKi , φi >, where

— C is the set of service categories (relation types).
— Si = {s1, . . . , sk} is the set of semantic services offered by the agent i. Each service

has an associated category c ∈ C. Each service sk ∈ Si is defined by the tuple sk =
(Ik, Ok, Pk, Effk), where Ik is the set of inputs, Ok is the set of outputs, Pk are the
preconditions for the execution of the service, and Effk are the effects of the service
execution.

—ARi ⊆ A is the set of agents that agent i has a structural relation with. Each agent
i maintains a vector of values τ i,j = [τ1i,j ... τ

|C|
i,j ] for each one of its neighbors. From

the point of view of agent i, an element τ ci,j of the vector represents the utility of the
relation between i and j for queries of category c. Also, agent i knows the set of services
that each neighbor offers.

—AKi ⊆ A is the set of acquaintances of agent i. If agent j is an acquaintance of agent
i, it means that i is at least aware of the existence of j. In the context of our service
discovery scenario, acquaintances are the agents that are found as a result of the
discovery process but agent i does not have a direct link with them. Agent i maintains
a vector of values ηi,j = [η1i,j ... η

|C|
i,j ] which represents the probability that agent i will

establish a new relation of category c ∈ C with agent j.
— φi: A → ARi is the forwarding function that selects the most promising neighbor to

forward a service request to during the service discovery process.

The main focus of our self-organization mechanism is the adaptation of structural
relations. Structural relations define the set of agents with which an agent establishes
a relation. The criterion considered to initially establish structural relations is ho-
mophily [Lazarsfeld 1954; McPherson et al. 2001]. This criterion is present in many
Complex Networks and has been used in the system presented in this paper to cre-
ate the social structure of agents in a self-organized way. Homophily allows agents to
establish structural relations when they enter the system and do not have previous
information with which to estimate the utility of potential structural relations. The ef-
fects of the homophily criterion to establish links is a network where agents are usually
connected with similar agents and also with a few dissimilar agents. This structure fa-
cilitates the decentralized search of services by reducing the number of steps needed
to locate a resource [Del Val et al. 2012c].

In our system, the homophily function H(i, j) calculates the similarity of two agents
i and j based on the degree of match between two sets of services, where Si and Sj are
the sets of services provided by the agents i and j, respectively. We consider each set
of services Si (or Sj) to be composed of a set of semantic concepts that can be classified
as: Inputs (Ii), Outputs (Oi), Preconditions (Pi), and Effects (Effi).

The level of matching between two sets of semantic concepts, Ci and Cj , is calculated
through a bipartite matching graph [Bellur and Kulkarni 2007] (see Figure 2). Let G =
(Ci, Cj , E) be a complete, weighted bipartite graph that links each concept ci ∈ Ci to
each concept cj ∈ Cj , (ci, cj) ∈ E, and letE represent the edges established in the graph
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0

0

0

Fig. 2. (Left) Full connected weighted bipartite graph GI , and (Right) resulting maximum weighted match-
ing relaxed bipartite graph G′

I .

E = Ci × Cj . The term ωij represents the weight associated to the arc ei = (ci, cj) ∈ E
between ci and cj as the semantic similarity between those concepts. Four degrees of
match can be identified: exact, subsumes, plug-in, and fail [Paolucci et al. 2002]. The
match is considered to be exact if c1 ∈ Ci is equivalent to c2 ∈ Cj (c1 ≡ c2); it is
subsumes if c1 subsumes c2 (c1 A c2); it is plug-in if c1 is subsumed by c2 (c1 @ c2); and
it is fail, otherwise. For simplicity, we have considered these four degrees of match,
but other degrees could be considered [Klusch et al. 2009]. A value in the interval
[0, 1] is assigned to each degree of match, where 1 represents an exact match between
the terms, 0.75 represents a subsumes relation, 0.5 represents a plug-in relation, and
0 represents a fail. The best match among concepts is obtained by calculating the
maximum weighted bipartite matching, G′ = (Ci, Cj , E

′), where E′ ⊆ E are the edges
that have the maximal value. The graph G′ is a relaxed bipartite graph because not all
the concepts from Cj have to be connected to a concept in Ci; therefore, two concepts
from Ci can share a concept from Cj . The weight of this graph is calculated as follows:

WG′ =

∑
ωij∈E′

ωij

max (|Ci|, |Cj |)
(1)

Specifically, to calculate the homophily between two agents, four bipartite graphs are
defined, (one for each of the components of services present in the sets Si and Sj): In-
puts (Ii, Ij), Outputs (Oi, Oj), Preconditions (Pi, Pj), and Effects (Effi, Effj). The linear
combination of the WG′ of each set of concepts gives the value of the homophily be-
tween agents (see Equation 2, where the parameters α and β assign different weights
to the components of the formula).

H(i, j) = α
[
β ∗WG′I

+ (1− β)WG′O

]
+ (1− α)

[
β ∗WG′P

+(1− β)WG′Eff

]
(2)

The homophily between agents is used to build a network that is based on pref-
erences, which grows according to a simple self-organized process. The construction
process of a growing network ensures that the oldest nodes have a higher probability
of receiving new links than the newest ones. Therefore, the total number of neighbors
that an agent has will depend on agent’s age. The average degree of connection of a
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network that is built following this process follows an exponential distribution [Doro-
govtsev and Mendes 2003].

5. SELF-ORGANIZATION IN SERVICE DISCOVERY
In the proposed decentralized system, when an agent needs a service, since there is
no service discovery facilitator nor a registry to be queried, an active search process
must be launched. This search process determines whether or not there is an agent
in the network that provides a service that is similar enough to the one required.
Depending on the success of the query resolution, an agent reasons about whether it is
worthwhile to maintain or change its current structural relations. In this section, the
service discovery and the self-organization of the structural relations are explained.

5.1. Service Discovery
The process of service discovery is carried out as follows. An agent i sends a query q
that contains the identifier of the agent, the semantic service description, the category
of the required service, the Time To Live (TTL) (which is the maximum number of
times that the query can be forwarded), the similarity threshold to consider a service
that is similar enough to the target service, and the agents that participate during the
service discovery (q = {i, s, c, TTL, ε},path = ∅). Then, the query is forwarded to the
most promising agent among its neighbors j ∈ ARi (i.e., the agents with which agent i
has a structural relation).

φi(t) = argmax
j∈ARi

1−

1−

 H(j, t)∑
n∈ARi

H(n, t)



|ARj |

 (3)

Equation 3 calculates the most promising neighbor j ∈ ARi of an agent i in order
to reach an initially unknown provider agent t that has the service s of the query q =
{id, s, c, TTL, ε, path = k | k ∈ A} in its set of services St. This equation uses homophily-
based factors (H) and degree-based factors (number of neighbors |ARj |) to explore the
network. The divisor of the expression is just a normalization factor. The homophily-
based factor is based on the semantic similarity between the services offered by the
agent j and the service that the target agent t should offer (i.e. the service s specified
in the query q). As an example, in Figure 1 agent i has three neighbors to forward
the query to (k, j, n). In order to select the most promising neighbor, agent i applies
Equation 3 as follows:

φi(t) = argmax
k,j,n

[
1−

(
1− 0.5

1.15

)5

, 1−
(

1− 0.5

1.15

)4

, 1−
(

1− 0.15

1.15

)5 ]
=

argmax
k,j,n

[0.942, 0.897, 0.502] = k

This decision minimizes the length of the path to the provider agent that can solve
the query since the structure of the network is based on degree and homophily [Del
Val et al. 2012c].

The receiver agent updates its information about the queries received (see Alg. 1
Lines 2,3). Then, if the TTL of the query does not exceed the TTL, the receiver agent
performs a matchmaking of the query against the services it offers. If the best match-
ing service has a degree above a certain semantic similarity threshold ε, then the

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.



39:12 E. del Val et al.

search ends successfully (see Alg. 1 Line 6). This threshold is established by the agent
that starts the service discovery.

In the case that the target agent is found, the agent that started the process adds
the provider agent as an acquaintance agent (see Figure 1b). The provider agent that
has the required service propagates a message to the agents that participated in the
search, which in turn update and analyze the utility of their relations (see Alg. 1 Lines
9,10).

Following the same process, in the case of an unsuccessful matching, the agent de-
creases the TTL and forwards the query to its most promising neighbor. Each time an
agent forwards a query, it adds its identification to the query (see Alg. 1 Lines 12,14).

ALGORITHM 1: Function that describes the service discovery process that an agent i carries out when
it receives a query.
1: function serviceDiscovery(i, q = (id, s, c, TTL, ε, path))
2: #i ← #i + 1 /* num queries received */
3: #ci ← #ci + 1 /* num queries of category c that agent i received */
4: t← (s, c, ∅, ∅) /* target agent that provides service s of category c */
5: if TTL > 0 then
6: /* checks the homophily of agent i with the target agent t */
7: if H(i, t) ≥ ε then
8: /* the agent i offers a service similar enough to the service of the target agent t */
9: /* agent i sends an inform message to the agent id that initiates the search*/
10: inform(id, i)

11: AKid → A
K
id ∪ {i}

12: updateLinksUtility(path) /* agents that participate in a successful search update their information*/
13: selfOrganization(path)
14: else
15: i← φi(t) /* selects the most promising neighbor */
16: TTL← TTL− 1
17: /* the query is forwarded to the most promising neighbor */
18: serviceDiscovery(i, q = (id, s, c, TTL, ε, path ∪ {i}))
19: end if
20: else
21: inform(id, ∅)
22: end if
23: end function

5.2. Self-Organizing Structural Relations
The structure of relations, that is, how agents are arranged, may severely affect the
performance of the system [Abdallah and Lesser. 2007; Gaston and desJardins 2005;
Kota et al. 2012]. Therefore, agents should check their structural relations with a fre-
quency that is based on the number of changes in the environmental conditions. Each
agent considers two aspects: (i) the establishment of suitable criteria to evaluate its
structural relations; and (ii) when it is more appropriate to change its relations by
breaking one or more relations or by establishing new relations with its acquaintances.

The criterion that we propose to evaluate, structural relations, is based on their
utility. In the context of service discovery, we have defined the utility of a structural
relation between agents i and j for a category c as:

U ci,j =
#c
i

#i
·mc

j , (4)

where
#c
i

#i
is the ratio between the number of queries for service category c that were

received by i and the total number of queries received by i so far, and mc
j ∈ (0, 1) is
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the average degree of match for queries of category c performed by agent j so far. Note

that
#c
i

#i
represents how important c is for agent i, while mc

j reflects the specialization

of j in the services that belong to category c. Note that the term mc
j and the term H

of Equation 3 (which is used to select the most promising neighbor) are related since
H also considers the specialization of its neighbors in services that are similar to the
services in the query.

As time passes, agent i evaluates probabilistically whether to maintain a relation
with agent j for queries of category c. If a relation with a neighbor is frequently and
successfully used to redirect queries about services of a certain category, then it is
interesting for the agent to maintain the relation. However, if a relation is seldom
used, then the agent must decide whether or not to maintain it. Therefore, relations
that are used during the discovery process are continuously reinforced by productive
interactions, while other relations are weakened and eventually broken. The utility of
a structural relation decays exponentially according to Eq. 5 [Jin et al. 2001]:

τ ci,j = 1− e−ρ·Uci,j (5)

where ρ ∈ (0,∞) is an adjustable parameter and U ci,j ∈ R+ is the utility of the estab-
lished relation between agent i and agent j for the category c. High values of ρ make
τ ci,j approximate 1 even with low values of utility, while low values of ρ make the agent
more demanding and the relation must have a high utility in order to be maintained
(see Fig. 3).

Each agent i maintains a vector of values τ i,j = [τ1i,j ... τ
|C|
i,j ] for each one of its

neighbors. From the point of view of agent i, an element τ ci,j of the vector represents the
utility of the relation between i and j for queries of category c. When agent i establishes
a new relation of category c ∈ C with agent j, the corresponding value τ ci,j is initialized
to 1.

Since established relations may break over time, new relations with some of the
acquaintances can be formed. Thus, for every acquaintance j ∈ AKi , agent i maintains
a vector of values ηi,j = [η1i,j ... η

|C|
i,j ] that represents the probability that agent i will

establish a new relation of category c ∈ C with agent j. The value ηi,j is strengthened
every time agent i obtains some knowledge about agent j that increases the potential
utility of establishing a relation with agent j, and it is weakened every time agent i
becomes aware of something about the acquaintance j that decreases this potential
utility.

Let U ci,j be the estimated utility that agent i would obtain if it established a relation
of type c with agent j. The probability of actually establishing a new relation with
agent j is given by Eq. 6 (note the similarity to Eq. 5):

ηci,j = 1− e−µ·Uci,j (6)

where µ ∈ (0,∞) is another adjustable parameter. The greater the estimated utility
by including a relation of category c with agent j, the higher the probability that this
relation will actually be established.

Agents that participate in the service discovery update their information about the
utility of their relations with other agents taking into account the information about
their current links with neighbors and acquaintances (see Alg. 2). Afterwards, the
agents reason about changing their structural relations. This reasoning process is de-
scribed in Algorithm 3. An agent i that has participated in a successful search process

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.



39:14 E. del Val et al.

ρ = 1
ρ = 5
ρ = 10
ρ = 50
ρ = 500

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

 

Utility

 
 
 
 
 

τ c
i,j

ρ = 1
ρ = 5
ρ = 10
ρ = 50
ρ = 500

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

 

Utility

 
 
 
 
 

τ c
i,j

Fig. 3. Functional form of τci,j for different values of ρ. When ρ = 1, agents decide to change their links as
soon as their utility decreases. As the value of ρ parameter increases, agents maintain links with low utility
until their utility is close to 0. At that moment, their utility and the probability of maintaining the links
decreases faster.

ALGORITHM 2: Function that describes how an agent i updates the utility of its links.
1: function updateLinksUtility(path)
2: for i ∈ path do
3: /* agents that participate in a successful search process */
4: for j ∈ AKi ∪ A

R
i do

5: for c ∈ C do
6: Uci,j ←

#ci
#i
·mcj

7: if j ∈ ARi then
8: τci,j ← 1− e−ρ·U

c
i,j /* neighbors */

9: else
10: ηci,j ← 1− e−µ·U

c
i,j /* acquaintances */

11: end if
12: end for
13: end for
14: end for
15: end function

determines the category c based on the maximum number of queries that it received.
Then, the agent selects the neighbor j ∈ ARi with the minimum utility value for this
category (minU(ARi )) and the acquaintance ai ∈ AKi with the maximum utility value
for this category (maxU(AKi )). After that, in order to consider a structural change,
agent i checks if the utility of the acquaintance ai is greater than the utility of its cur-
rent neighbor j. Agent i also checks if the current neighbor j has a degree of connection
of 3.

The structural relations between agents are undirected. Therefore, in our system,
both agents that are in a relation must agree that a change in their relation is appro-
priate. Agent j analyzes which is the category c with the maximum number of queries
that it received.Then, the agent selects the neighbor n ∈ ARj with the minimum utility
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value for this category (minU(ARj )) and the acquaintance aj ∈ AKj with the maximum
utility value for this category (maxU(AKj )). Similarly to agent i, agent j checks if the
utility of the acquaintance aj is greater than the utility of its current neighbor n. Agent
j also checks if its current neighbor i has a degree of connection of 3.

In order to change the link (i, j) for a new one, the algorithm determines which
agent will obtain the highest utility when a new link is established. That agent will
be the one that changes its current structural relation with the previously selected
acquaintance.

ALGORITHM 3: Function that describes how an agent i decides to reorganize its links.
1: function selfOrganization(path)
2: for i ∈ path do
3: c← argmax(#ci |c ∈ C)
4: j,minUi ← minU(ARi ) /* i’s neighbor with the lowest value of τci,j */
5: ai,maxUai ← maxU(AKi ) /* i’s acquaintance with the highest value of ηci,ai */
6: if (maxUai > minUi) ∧ (|Nj | > 2) then
7: c← argmax(#cj |c ∈ C)
8: n,minUj ← minU(ARj ) /* j’s neighbor with the lowest value of τcj,n */
9: aj,maxUaj ← maxU(AKj ) /* j’s acquaintance with the highest value of ηcj,aj */
10: if (maxUaj > minUj) ∧ (|Ni| > 2) then
11: if maxUai > maxUaj then
12: ARi ← A

R
i − j

13: AKi ← A
K
i − ai

14: ARi ← A
R
i ∪ {ai}

15: else
16: ARj ← A

R
j − n

17: AKj ← A
K
j − aj

18: ARj ← A
R
j ∪ {aj}

19: end if
20: end if
21: end if
22: end for
23: end function

6. EXPERIMENTS
In order to evaluate the proposed mechanism for self-organization during service dis-
covery in Service-Oriented MAS, we performed several tests. We developed our own
simulation tool in Java to validate our proposal. In the experiments, we did not focus
on how much time each simulation required since we considered that the number of
snapshots that each self-organization mechanism requires would be less dependent on
the hardware where the experiments were performed. The number of iterations that
we considered in each experiment was established based on the evolution of the system
until the results remained constant.

The tests that we used to evaluate the performance of the service discovery when
self-organization mechanisms are used by the agents. The tests include the following
metrics:

— the average number of steps that are needed to successfully resolve a query,
— the percentage of successfully resolved queries,
— the number of structural relations that have changed during the service discovery,
— the efficiency of the system, calculated as
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E =
#q · p
#msg

· #l

#l + ∆l
(7)

The rationale of Equation 7 is the following. Let #q be the number of queries that
have been successfully solved, p the average number of steps required to arrive to the
target service, #msg the total number of messages generated, #l the number of the
original relations, and ∆l the number of structural changes that have occurred as a
result of the adaptation decisions in the system. The first term of Equation 7 indicates
the degree of adaptation of the system. When the value of this term approaches 1, it
means that the system is completely adapted. In this case, the majority of searches
end successfully, and the number of messages generated in the system is close to the
number of messages in the best scenario (#q · p). If the system is not adapted to the
service demand, the number of unsuccessful searches increases, and, therefore, the
number of useless messages that overload the system increases. Consequently, this
term, which reflects the adaptation of the system, is close to 0. The second term of the
efficiency metric indicates the quality of the structural changes. The combination of
the two terms reflects the efficiency of the system. The system efficiency is high (close
to 1) when the number of structural changes is low (according to a certain threshold)
but high enough to do the following: reduce the path length, improve the number of
successful searches, and reduce the number of useless messages in the system. The
system efficiency is low when there is a high number of structural changes but the
path length is not reduced. Therefore, the number of useless messages that navigate
the network increases the workload of the system and reduces its efficiency.

Each network of the tests that we performed was an undirected network based on
homophily with 1,000 agents. We considered 30 networks in each test. We assumed
that all the agents were cooperative and had a homogeneous behavior, that is, the
agents would fulfill the rules and redirect the query. Each agent offered one semantic
web service associated to a category. The agents were distributed over 16 semantic cat-
egories. The set of semantic service descriptions used for the experiments were taken
from the test collection OWL-S TC4.4

All the agents in the system had the same probability of generating service queries.
The query was successfully solved when an agent that offered a similar service (over a
threshold ε) was found before the TTL expired (TTL = 100).

6.1. Self-Organization Parameters
In this test, we analyzed the influence of the ρ and µ parameters (see Eqs. 5 and
6) in the self-organization mechanism proposed in this paper. The average degree of
connection of the network was 2.5. Query distribution in this test was modeled as an
exponential distribution (λ = 0.35) that represents that there are always a few service
categories that are the most demanded and the rest of services have a lower demand
rate [Adamic and Huberman 2002; Huberman and Adamic 2000]. In the experiment,
we made a snapshot of the measures in each iteration. Each snapshot consisted of
5,000 queries. The value of ε threshold was 0.75.

We considered several combinations of ρ and µ values that represent different self-
organization behaviors of agents. We grouped these combinations into 4 cases. Each
case defines an adaptation behavior of the agents. These behaviors range from ’impul-
sive’ behaviors where agents rewire their links as soon as their utility decreases to
more ’rational’ or ’demanding’ agents that wait until the utility of their links decreases

4http://www.semwebcentral.org/projects/owls-tc/ visited:15/10/2012
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Fig. 4. Evolution over time of system measures considering different values for the ρ and µ parameters.

XXXXXXXXXXXXµ (acq.)
⇢ (neigh.)

not demanding strict

A B
not demanding (⇢ = 1, µ = 10) (⇢ = 10, µ = 10)

C D
strict (⇢ = 1, µ = 1) (⇢ = 10, µ = 1)

Table 1: Influence of values of the ⇢ and µ parameters on the structural self-organization.

that the agent is not strict with the utility of the acquaintances. An
agent with that configuration is not rigorous with the utility of its
current relations, and as soon as their utility decreases it will replace
them with acquaintance that it is not sure that it is going to be used for
the forwarding process. Therefore, the structural changes are almost
random. In this scenario, the number of steps in the discovery process
decreases since only the queries about services that are situated near
the source agent are solved. The improvement in the success rate and
e�ciency is not significant due to the random and high number of
structural changes that do not provide a suitable reorganization of the
structural relations.

• Case B (⇢ = 10, µ = 10). ⇢ = 10 means that the agent decides to
maintain its current relations although their utility have low values.
µ = 10 implies that the agent is not strict with the utility of the
acquaintances. An agent with this configuration rewires its current
relations when its utility has decreased considerably. The agent replaces
them with acquaintances without high utility. In this scenario, the
number of rewired relations is low, the average number of steps in
the discovery process decreases considerably in the first iterations, and
there is an improvement in the success rate and e�ciency.

• Case C (⇢ = 1, µ = 1). ⇢ = 1 means that the agent decides to remove a
relation as soon as its utility starts to decrease. µ = 1 means that the
agent is strict with the utility of its acquaintances. The agent does not
consider an acquaintance as a ’good alternative’ if it does not have a
utility value that is high enough. Although the agent wants to rewire
its relations when their utility starts to decrease, it has to wait for an
acquaintance with high utility. In this scenario, the number of rewired

25

Fig. 5. Influence of ρ and µ parameters when these parameters take values of 1 or 10 in the structural
self-organization.

considerably. The results are shown in Figure 4. We show the most representative
values of ρ and µ for each case (see Table 5 and Fig. 3):

— Case A (ρ = 1, µ = 10). The expression ρ = 1 means that the agent decides to rewire a
relation quickly as soon as its utility starts to decrease; µ = 10 implies that the agent
is not strict with the utility of the acquaintances. An agent with that configuration
is not rigorous with the utility of its current relations, and, as soon as their utility
decreases, it will replace them with acquaintances that it is not sure that will be used
for the forwarding process. Therefore, the structural changes are almost random.
In this scenario, the number of steps in the discovery process decreases since only
the queries about services that are situated near the source agent are solved. The
improvement in the success rate and efficiency is not significant due to the random
and high number of structural changes that do not provide a suitable reorganization
of the structural relations.

— Case B (ρ = 10, µ = 10). The expression ρ = 10 means that the agent decides to main-
tain its current relations even though their utility has low values; µ = 10 implies that
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the agent is not strict with the utility of the acquaintances. An agent with this con-
figuration rewires its current relations when its utility has decreased considerably.
The agent replaces them with acquaintances without high utility. In this scenario,
the number of rewired relations is low, the average number of steps in the discovery
process decreases considerably in the first iterations, and there is an improvement in
the success rate and efficiency.

— Case C (ρ = 1, µ = 1). The expression ρ = 1 means that the agent decides to remove a
relation as soon as its utility starts to decrease; µ = 1 means that the agent is strict
with the utility of its acquaintances. The agent does not consider an acquaintance
to be a good alternative if it does not have a utility value that is high enough. Even
though the agent wants to rewire its relations when their utility starts to decrease,
it has to wait for an acquaintance with high utility. In this scenario, the number of
rewired relations is a bit lower than expected, but there is an improvement in the
success rate and efficiency.

— Case D (ρ = 10, µ = 1). The expression ρ = 10 means that the agent decides to
maintain its current relations until their utility has low values; µ = 1 means that
the agent is strict with the utility of the acquaintances. In this scenario, the agent
only rewires relations when their utility is really low and if their acquaintances have
a high utility. This configuration produces the lowest number of structural changes.
Therefore, the improvement in the service discovery process and in system efficiency
takes more time.

From the results shown in Figure 4, we can conclude that, in configuration A, the
agents rewire many more relations than necessary to adapt the system to the service
demand. Each structural change implies a cost for the system; therefore, its efficiency
decreases considerably (see Eq. 7). In configuration D, the agents are not impulsive
and they decide to wait until the utility of their links decreases. Therefore, the adap-
tation process does not consider many structural changes. The degree of adaptation
achieved is not enough to provide a significant improvement in the different set of
measures (path length, percentage of successful searches, and efficiency). This configu-
ration is not appropriate in dynamic environments where the service demand changes
frequently. In scenarios B and C, there is a balance between the number of rewired
relations and the improvement in system performance. It can be concluded that the
best configurations are B and C.

6.2. Comparison with other approaches
In the second test, we evaluated the influence of our self-organization mechanism
based on: (i) the utility functions for the evaluation of structural relations with neigh-
bors,ARi , and acquaintances,AKi (see Eqs. 5 and 6); and (ii) the criteria that each agent
uses to decide when it is more appropriate to change current structural relations. Fig-
ure 6 shows the comparison of the following: the results of our proposal (Utility),
the results without using adaptation mechanisms (Without Adaptation), the results
obtained with a system where the service distribution over agents is equal to the ser-
vice demand (Optimal), and the results with a self-organizing mechanism based on
reinforcement learning algorithm (WPL) (see Figure 6).

The self-organizing mechanism based on RL that is shown in this comparison uses
a learning strategy (Weighted Policy Learner) that is similar to WoLF [Bowling and
Veloso 2002]. The Weighted Policy Learner algorithm is based on the following idea:
slow down learning when moving away from a stable policy and speed up learning
when moving towards a stable policy. The decision-making algorithm for establishing
when it is appropriate to add or remove a link is based on a reorganization parameter
and on the average degree of connection of the network.
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Fig. 6. Evolution over time of system measures considering different adaptation mechanisms: Utility and
WPL.

The experiments were done in 30 networks where the average degree of connec-
tion of the networks was 4, since WPL broke the networks into too many isolated parts
when the average degree of connection was 2.5. In this test, the number of queries per
iteration was 5,000. The distribution of queries followed an exponential distribution
(λ = 0.35). WPL had a reorganization rate value of 0.002. Utility was configured with
parameters ρ = 1 and µ = 1. Note, that for reasons of clarity, the error intervals of the
results of the experiments are not shown here in the graphs.

In general, both strategies improved the average path length in the search process
(see Fig. 6(a)). However, WPL took more time to reduce the average path length in the
searches, and its improvement was not as significant as the improvement achieved by
Utility. Note that in the Figure 7 the error intervals are bigger with WPL since the
degree of adaptation to the service demand achieved is lower than the degree of adap-
tation achieved with Utility. The error intervals of the Utility strategy decreases as
the degree of adaptation increases. At the 10th iteration, the mean path and the error
intervals are equal to those obtained with the Optimal system adaptation.

Considering the number of changes in the structural relations between agents (see
Fig. 6(c)), Utility initially generates a high number of changes if we compare it with
WPL. In fact, WPL follows a constant rate of changes, and the adaptation is slower. With
Utility the agents only rewire relations when the acquaintances are significantly
better than the current relations. This makes agents change a reasonable number
of structural relations. Through local decisions of agents, the system is able to regu-
late the number of structural changes required. As the structure is getting adapted to
the service demand, the number of changes decreases and so does its variability (i.e.,
the error intervals are smaller than in the first interactions). The success of the service
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Fig. 7. Evolution over time of system measures considering dynamic changes in the service demand and
different adaptation mechanisms: Utility and WPL.

discovery system is improved with both strategies (see Fig. 6(b)). With both adaptation
mechanisms, agents were able to create new relations that connect them with other
agents that offer the most demanded services. Utility improved the success rate in
the first two iterations. However, WPL took more time to achieve a success rate over
90%. Fig. 6(d) shows the efficiency of the system when self-organization mechanisms
are included. The efficiency was calculated taking into account the success of the ser-
vice discovery, the average path length, and the number of structural changes (see
Eq. 7). The best results were obtained by the Utility, which reduces the number of
steps in the search process and increases the number of successful discovery queries
faster than WPL. Moreover, Utility is able to determine in a decentralized way whether
or not it is appropriate to make structural changes.

6.3. Dynamic Service Demand
Since agent activity evolves over time (i.e., according to the time of day, the different
days of the week, or the different seasons of the year [Howard et al. 2001][Aquin et al.
2010]), the system should be able to adapt itself without external coordination based
on to the customers’ demand dynamics. The aim of the third test was the evaluation of
the performance of adaptation mechanisms with dynamic service demands.

In this test, the number of queries per iteration was 1,000. The experiments were
done in 30 networks where the average degree of connection of the networks was 4,
since WPL breaks the networks into too many isolated parts when the average degree
of connection was 2.5. WPL had a reorganization rate value of 0.002. Utility was con-
figured with parameters ρ = 1 and µ = 1 (see Section 6.1 case B).
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Initially, the service demand followed an exponential distribution where there was
a reduced set of service categories that were much more demanded than the other
categories. This demand changed at iteration 50. The new demand followed another
exponential distribution, but after iteration 50 the most demanded services were from
categories that were the least demanded in the previous iterations. This new distri-
bution continued until iteration 150, where the service demand was reverted to the
initial distribution.

Figure 7 shows the results of this experiment. In the first interval [0,50], Utility
allows agents to adapt their structural relations faster; therefore, the number of steps
in the discovery process is reduced, the success improves, and the system efficiency in-
creases considerably even though the number of structural changes is high. WPL needs
more time to adapt the structural relations to the current demand since the number
of redirections is too low to deal with changes in the service demand. Note that since
the degree of adaptation achieved with WPL is not as high as the degree of adaptation
achieved by Utility, the error intervals with WPL are bigger than with Utility. As
this Figure 7 shows, at the beginning of the second interval [50,100], there is a sharp
change in the service demand. The systems where agents use Utility were completely
adapted to the previous service demand. As a consequence, there is a jump in the num-
ber of structural changes and in the average number of steps (see Figure 7(c)). Never-
theless, the average number of steps is lower than in systems that use WPL. There is
an important drop in the success and in the efficiency of the system (see Figures 7(b)
and 7(d)). Both algorithms need time to be able to start improving the structure of the
network. At the end of this interval, both algorithms have improved the success rate of
the solved queries and the mean path length is reduced (see Figure 7(a)). Nevertheless,
in the case of Utility, the efficiency of the system is still better than the efficiency of
WPL (see Figure 7(d)). Finally, as Figure 7 shows, in the third interval, the number of
structural changes using WPL are enough to adapt to the current service demand (i.e.,
the service demand distribution of the first interval) since the adaptation in the second
interval has only been partial. In the case of Utility, the network structural relations
were adapted to the previous demand and initially the system requires a higher num-
ber of structural changes to adapt to the new service demand. Nevertheless, since the
average number of steps remains low and the success rate is high, the efficiency is
maintained as in previous intervals.

7. CONCLUSIONS
In this work, we have proposed a Service-Oriented MAS where agents offer their func-
tionality through services. In contrast to other approaches in the literature which
make use of the hierarchy of the entities of the system, in our system, all the agents
are equal and only have a local view for performing self-organization actions. Another
difference with current approaches of decentralized service discovery that start from
a random structure for the system, we present an initial self-organized network struc-
ture that is based on a social feature called homophily. Therefore, when agents enter
the system, they establish relations with other agents taking into account homophily,
which is based on the semantic similarity of the services provided by the agents. The
resultant structure is a self-organized growing network.

Agents in the system need to locate other agents that offer certain services in or-
der to fulfill their goals. We have described a decentralized service discovery process
through which, by considering homophily and the degree of connection with their di-
rect neighbors, agents are able to reach the agent that provides the required service in
just a few steps.

However, if service demand changes and the new service demand distribution does
not correspond to the distribution of services among agents, the performance of the
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service discovery could be affected. In order to adapt the structure of the system to
changes in service demand, we have included a self-organization mechanism in the
service discovery process. This mechanism exchanges current relations of agents that
are not being used for new relations that are expected to be frequently used. During the
service discovery, agents evaluate the utility of their current links and the suitability of
their acquaintances. Not only does this utility take into account the traffic that passes
through an agent, it also takes into account the type of services that the agent offers.
Based on this information, each agent is able to decide when it is worthwhile to modify
its structural relations with its current neighbors and then select the most appropriate
acquaintances to replace these neighbors in order to maintain its degree of connection
in the network. The set of acquaintances is not composed of agents that are randomly
selected is the case in other approaches in the literature. In our proposal, the set of
acquaintances is composed of agents that are found as a result of a service discovery
process.

We performed several experiments to evaluate the effects of the inclusion of the
proposed self-organizing mechanism in the service discovery performance. First, we
analyzed the influence of a set of configuration parameters in our self-organization
mechanism. Second, we compared our proposal with three different ones: (i) systems
where service discovery does not include a self-organization mechanism; (ii) systems
that have a structure that is completely adapted to the service demand; and (iii) sys-
tems that include a self-organization mechanism based on reinforcement learning. Fi-
nally, we evaluated the proposed self-organization mechanism in a dynamic environ-
ment with different service demands. In general, the inclusion of the proposed self-
organization mechanism improved the efficiency of the service discovery process by
reducing the number of steps needed to locate the required service and by increasing
the number of successful searches. The rate of structural changes was reduced signif-
icantly as the system was getting adapted to the service demand. Furthermore, this
mechanism performed well under situations where drastic changes in the service de-
mand occured. As future work, we plan to extend this proposal to include aspects that
are related to non-functional parameters of services and to take into account the of
heterogeneous behavior of agents.
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