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Abstract

Self-organization and cooperation of agents in open societies play an important
role in the success of the service discovery process. Self-organization allows
agents to deal with dynamic requirements in service demand. Moreover, in dis-
tributed environments where service discovery is carried out by agents that only
have a partial view of the system, cooperation with neighbors is a key issue in
order to locate the required services. However, cooperation is not always present
in open agent societies. With this motivation, we present a set of mechanisms that
consider self-organization actions and incentives to adapt the structure of the so-
ciety to the service demand and to promote a cooperative behavior among agents
in open societies.
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1. Introduction

Service discovery systems are deployed in dynamic environments where their
components, features, and tasks do not remain constant. These systems are ex-
pected to perform well under many circumstances (i.e., when the number of avail-
able agents changes, or when the service demand varies with time). For that rea-
son, it is important to take into consideration the inclusion of self-organization
mechanisms in order to adapt the social underlying structure to environmental
conditions and changes in the requirements [20]. When a global view of the so-
ciety is not available, the organization process should be performed in a decen-
tralized way without the supervision of any central authority. However, this task
becomes even more difficult when there are self-interested agents that do not co-
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operate with others. In that case, if there are no mechanisms to deal with these
agents and promote cooperation, the performance of the service discovery process
could be seriously compromised [9]. The cooperation of entities that participate
in a decentralized system and their self-adaptation to environment changes are re-
quired to obtain a good performance that provides benefits for all the participants
in the context of distributed systems. Some of the scenarios where cooperation
and self-adaptation are required are: wireless ad-hoc networks where nodes rely
on other nodes to forward their packets in order to reach the destination node; file
sharing in P2P systems [24]; streaming applications [16], discussion boards [11],
on-line auctions [21], or overlay routing [4].

To illustrate the context where the self-organization and cooperation emer-
gence mechanisms are going to be applied, let us present a service discovery sce-
nario where the service discovery process is described as well as the situations
where self-organization mechanisms are applied. Consider a network of services
as a form of autonomic cloud computing system. This network contains different
groups of semantic web services provided by software agents as part of an over-
laying network. These services are provided by agents that, in some situations,
should interact with each other to achieve a task that they cannot afford to do
individually since they are not specialized in that area or because the task is too
complex to be carried out by a single agent. For instance, if an agent i only has
local knowledge about the services provided by agents k, n, and j and needs to
locate a payment service in order to do a bank transaction, it should start a service
discovery process to locate the agent v. The service discovery process will require
a fewer number of steps if all the agents cooperate that if there are non-cooperative
agents. It may happen that agent k and agent nmay decide not to cooperate in for-
warding messages which will damage the performance of the system. Moreover,
if services provided by agent v are being frequently requested by agent i, agent i
may consider to adapt its current links in order to reduce the number of steps from
agent i to agent v.

In this paper, we present a combination of self-organization and cooperation
mechanisms that agents use in order to maintain the performance of the service
discovery process when there are changes in the service demand or when selfish
agents appear. The self-organization mechanisms focus on how the relations be-
tween agents could be rearranged or how the agent population could be adapted
according to the service demand to maintain or improve the performance of the
service discovery process. The mechanisms that promote cooperation when there
are self-interested agents in the society are based on local structural changes and
the use of incentives.
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i
Si = {videoP layer}

Ri = {videoProvider}

j
Sj = {iTunes}

Rj = {MediaProvider}

v
Sv = {MasterCard}

Rv = {PaymentProvider}

m
Rm = {PayPal}

Sm = {PaymentProvider}

k
Sk = {P2PFilms}

Ri = {FilmProvider}

n
Sn = {Netflix}

Rn = {MoviesProvider}

Figure 1: An example of a decentralized service discovery system.

The paper is structured as follows. Section 2 presents works related to the
proposal presented in the paper. Section 3 describes the formal model of the
system. Section 4 explains how the structure of the network can be modified
through local decisions of agents in order to adapt itself to the service demand.
Section 5 analyzes the combination of social plasticity and incentive mechanisms
in the service discovery scenario to promote cooperation. Section 6 presents a
set of experiments where we evaluate the performance of our proposal. Finally,
section 7 presents conclusions and final remarks.

2. Related Work

Search approaches commonly used in decentralized systems where all the en-
tities are considered to be equal and there is an arbitrary topology are based on
blind or informed algorithms. Blind algorithms do not consider any information
about resource locations and use flooding or random strategies that can overload
the system with the traffic generated during the the search process [19, 26]. In-
formed approaches try to cope with this problem and consider local information
to create and guide the search. The information considered is about their direct
neighbors [3, 15] or statistics from previous searches and it is stored in local reg-
istries [2].

There are proposals related to decentralized search or service discovery in dis-
tributed systems that assume that all the entities that participate in the discovery
process are cooperative. However, this not always happen in open societies. We
consider an open society as a system where different and heterogeneous agents
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can join and leave the system. These systems are characterized by heterogene-
ity of participants, limited trust, different goals, and a high probability of non-
conformance to specifications [6]. Approaches based on Game Theory have been
widely used to explain mechanisms through which cooperation can emerge and
be maintained in different scenarios. Depending on the context, mechanisms such
as direct reciprocity [17], indirect reciprocity [18], tags [22], or punishment [12]
have been used. Some approaches based on games assume well-mixed popula-
tions where everybody interacts with equal frequency with everybody else. How-
ever, real populations are not well-mixed. In real populations, some individuals
interact more often than others; therefore, to understand the social behavior of the
systems it is important to consider the social structure [10].

The approach that we present in this paper for service discovery is based on
an informed algorithm that considers local information in order to guide the ser-
vice discovery process as well as to self-organize the network structure (i.e., the
social structure). Initially, the structure is created based on the similarity of the
resources provided by the agents. However, the environment conditions do not
remain constant. Therefore, in our approach, agents consider self-organization
actions in order to maintain or improve the performance of the service discovery
process when there are changes in the service demand. Unlike other proposals
related to self-organization [25], in our proposal, we consider not only changes in
the structure of the agents, but also changes in the population of the system. More-
over, we have considered strategies such as incentives and structural changes to
promote cooperation during the service discovery process.

3. Formal Model

Our proposal for agent society is modeled as an undirected network populated
by a set of autonomous agents A = {i, ..., n} that establish relationships with
other agents L ⊆ A × A, where each link (i, j) ∈ L indicates the existence
of a direct relationship between agent i and agent j based on a probability that
considers the semantic similarity of their attributes (i.e., the roles and the services
of the agents). The role determines the type of services offered by the agent. For
a more detailed description of how the structure of the network is created we refer
the reader to [8]. An agent is a social entity that interacts with other agents in the
society. It controls its own information about:

• the semantic services it offers Si = {si, . . . , sn};
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• the organizational roles it plays Ri = {cat1, . . . catm} where each role is
defined by a semantic concept. A role can contain a set of semantic service
profile descriptions. Each role has associated a numeric index ri.

• an internal state sti that contains local information used by the self-organization
and the cooperation mechanisms.

The following information contained in the internal state (sti) is related to self-
organization mechanisms:

• Ni is the set of direct neighbors agent i has a direct relationship with. For
each neighbor j ∈ Ni, agent i has information about: the roles j plays, the
services j offers, the degree of connection of j, and the number of times
that a query that arrived to the agent i and was not forwarded through its
neighbor j (Qij);

• Acc a set of acquaintances whose existence agent i is aware as a result of
the discovery process but it does not have a direct relationship with;

• −→qi = [qr1i , q
r2
i , ..., ] is the local view of the service demand distribution (i.e.,

the number of queries that the agent receives about services offered by dif-
ferent roles r1, r2, ...);

• the status of the agent. An agent can be in a stable or transition status. The
status depends on the accuracy of the information about the service demand
of the system an agent has. The degree of accuracy is determined by a corre-
lation parameter ρi. This parameter establishes the relationship between the
local service demand distribution (−→qi ) and the expected service demand dis-
tribution. Power-law, Exponential, and Zipf’s-law distributions are present
in many features of Internet [1, 13, 5]. In our system, the exponential distri-
bution has been considered as the function that models the service demand
in the system, where there are always a few services that are the most de-
manded and the rest of the services have a lower demand rate. If an agent
has an accurate view of the service demand (ρi close to 1), it is considered
to be in a stable situation. When a new agent arrives to the system, or when
it has information that introduces noise in its local environment, the agent
is considered to be in a transition situation.

The information in the internal state of an agent (sti) related to the cooperation is:
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• dci represents the degree of cooperation of agent i and it ranges in the inter-
val [0,1],

• Bi represents the behavior of agent i. The behavior of the agent can be
cooperative or non cooperative and it is established taking into account the
agent’s payoff and the behavior of its neighbors.

• Fi is the number of queries that agent i forwarded,

• SQi is the number of queries that went through the agent i and finally arrived
to the target agent,

• RQij is the number of queries from agent i that a neighbor agent j refused
to forward,

• Pi is the number of queries solved agent i,

• Ci is the number of queries created by agent i.

The decision making process about self-organization actions or actions related
to the promotion of cooperation is integrated in the service discovery process. The
service discovery process follows the steps described below:

1. The process starts when agent i requires the services of other agent in order
to achieve one of its goals. Then, agent i creates a query q = (id, t, TTL, ε),
which contains the identifier of the agent that creates the query, semantic
profile description of the desired provider agent, the Time To Live of the
query, and the similarity threshold that determines when a provider agent is
going to be considered enough similar to the target agent. A target agent
profile description t consists on service sq and the role rq that the target
agent should play (st, rt).

2. Agent i looks for a neighbor similar to t. Specifically, q is forwarded to
the neighbor that has semantic closeness to the target agent t and also has a
high degree of connection.

3. The selected neighbor j analyzes, based on its payoff and the payoff of its
neighbors, if it is worthwhile forwarding the query (i.e., if it is worthwhile
to cooperate or not). If j rejects forwarding the query, agent i updates the
number of times that neighbor j rejects its request of forwarding (RQij).
Based on this information, agent i considers breaking its current link with j
(see Section 5).
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4. If agent j does not cooperate, agent i repeats the steps 2 and 3 until it finds
an agent that cooperates. Once a cooperator neighbor is found, agent i for-
wards the query to it and updates its information about which of its links
have been used and which not (Qij). Agent i also updates the number of
total queries it received (Qi), and the number of queries received about the
role rq (−→qi [rq]). In the case that there are no cooperators in the neighbor-
hood, the discovery process fails.

5. When the query reaches a suitable provider agent similar to t, the service
discovery process ends and all the participants receive a reward. The agent
that started the service discovery process adds the provider agent found to its
set of acquaintances (Acc) only if it does not already have an acquaintance
that plays the role of the provider agent. Finally, the agent that started the
process analyzes its internal state and the set of self-organization actions
that it can carry out (see Section 4).

In the following sections, we describe with more detail the actions included in
the service discovery process that are related to self-organization and cooperation
emergence mechanisms.

4. Self-Organization Mechanisms

In order to make decisions about self-organization actions agents need to have
an accurate local view of the service demand in the system. To evaluate the ac-
curacy of their local view agents analyze its internal state (sti). Initially, an agent
is in a transition state. An agent in this state does not have reliable and sufficient
information to be able to estimate the current service demand distribution in the
system according to its local view. In this state, an agent can reorganize its lo-
cal view of the service demand distribution −→qi taking into account the number of
queries received about the services associated to each role.

An agent in the transition status has three options:

• it changes its status from transition to stable when ρi (i.e., the correlation
degree between its local data about service demand in the society, −→qi , and
an estimation of the service demand distribution) is over a threshold δ and
it has enough information about the service demand (Qi) (see Figure 2).

• it remains in the transition status if it considers that it has not enough in-
formation about the service demand (Qi) and (ρi) is not over a threshold
δ.

7



• it resets its local service demand view if it has a big enough deviation of
the correlation degree although it has received a high number of queries.
This usually happens when there is a change in the service demand. This
fact introduces new information in the local view −→qi of the agent that does
not follow the expected distribution. Therefore, it is important to detect
these changes in order to reset the local view of the system with outdated
information and only consider the new information that arrives about the
new service demand.

The correlation parameter ρi indicates the degree of fitness between the local
data−→qi and the expected exponential distribution eDistr(x), where the x parame-
ter represents a numeric role identifier. In our system, the estimation of the service
demand distribution follows an exponential distribution. This type of distribution
is present in many features of open systems such as Internet [1, 13, 5]. Specif-
ically, we assume that the expected service demand distribution is eDistr(x) =
a · ex·b. We estimate the a and b parameters of this distribution using the least
squares method and the data from −→qi . In order to analyze if the agent received a
sufficient number of queries we use logistic function (see Equation 1).

P (Qi) =
1

1 + e
−(Qi−d)

y

, (1)

where y is the slope, d is the displacement constant, and Qi is the number of
queries the agent has received. The most influential constant is d. A higher value
of d means that the agent is going to consider a higher number of queries in order
to make a decision about resetting the information about local view of the service
demand −→qi or changing to the stable state. The function P (Qi) returns a value
in the range [0,1], where 0 indicates that the agent has not received a sufficient
number of queries, and 1 indicates that the number of queries is significant.

An agent that is in a stable state resets its local view of service demand and
turns back into the transition status if it has a big enough deviation of the correla-
tion degree at any moment. This means that the service demand is changing and
that the local view of the agent is not accurate with respect to the current systems
demand, and it is advisable to reset its local view since the consideration of out-
dated information introduces noise in the local view of the agent and affects the
self-organization process.

Self-organization of the structural links. Once the agent is in an stable state,
it is able to make decisions about self-organization actions. Agents are able to
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Figure 2: Conditions required to reset the local view of the service demand in its internal state.

reason about whether or not maintain, reinforce or create new structural relations.
Agents consider a decay metric associated to each link: decay(Qij) = 1−(1/(1+
e−(Qij−z)/y), where y is the slope, z is the displacement constant,Qij is the number
of queries that arrived to agent i and were not forwarded through neighbor j. This
metric ranges in the interval [0,1], where 0 indicates that the link is not being
used and 1 indicates the the link is being used. Each time agent i forwards a
query, it updates the information about the traffic of its links. If the query is
forwarded through agent j, theQij is updated to 0. Otherwise, theQij is increased
by increments of 1. With the information provided by the decay function, agent i
reasons about the benefit of maintaining its current links.

Population self-organization: leaving, remaining, or cloning. The analysis that
evaluates whether it is worthwhile for the agent to remain in the system, clone
itself, or leave the system takes the following parameters into account:

• the number of queries received by the agent Qi;

• the status of the agent;

• SHi is an indicator that measures the demand of the services provided by an
agent i. SHi ranges in the interval [0,1], where 1 indicates that the services
the agent offers are required in the system, and 0 indicates that the services
the agent offers are not being demanded in the system. This metric reflects
how important an agent is to the system with regard to the current service
demand. The structural similarity of an agent with respect the system dy-
namics is defined by the following function:

SHi = a · eri·b,
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where ri is the numeric index that represents the role of agent i that maxi-
mizes the function a · ex·b that represents the estimation of the service de-
mand distribution:

ri = argmax
x∈Ri

a · ex·b

In the last function, the a and b parameters are obtained through the least
squares method and the data from the local view of the service demand
−→qi . An example of how the structural homophily of agent i is calculated
is shown in Figure 3. Agent i plays two roles r1 and r4. At that moment,
using the data in −→qi , the exponential function that estimates the service de-
mand distribution is eDistr(x) = 1.73 · ex·1.16. Therefore, the structural
homophily of agent i is:

SHi = 1.73 · er1·1.16 = 0.54

where

r1 = arg max
r1,r4∈Ri

[1.73 · e−r1·1.16, 1.73 · e−r4·1.16] = arg max
r1,r4∈Ri

[0.54, 0.018]

This means that the services that agent i offers are being demanded, but are
not the most demanded services in the system.

• the number of queries forwarded since the last analysis ∆qi;

• the degree of correlation ρi.

First, an agent evaluates whether or not it is worthwhile to remain in the sys-
tem. The analysis of the leave action is based on the following parameters: num-
ber of queries received Qi, the degree of correlation ρi, and SHi (see Table 1). If
the number of queries received is high enough, ρi is over a threshold σ, and SHi

has a value near 0; then the agent decides to leave the system. However, this does
not always happen. In order to ensure the availability of a certain type of services
in the system, the agent does not leave the system if there is no similar neighbor
that provides similar services. The number of similar neighbors is calculated by
SimN function. This function returns the number of agents in the neighborhood
that are similar to agent i. This function is based on the semantic similarity be-
tween agents described in Appendix A. Finally, if the agent leaves the system, it
breaks all the connections with all its immediate neighbors and communicates that
it is going to leave. The neighbors will try to find an alternative neighbor based
on the semantic similarity.
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Figure 3: Example of the internal state sti of the agent i.

If the agent has decided not to leave the system, it analyzes the clone action.
This analysis is also based on the parameters described above. The main dif-
ference is the logistic function for evaluating the significance of the number of
queries received. This function is similar to function 4. However, in this func-
tion, the displacement parameter d takes into account the number of clones that an
agent has. If the number of queries received is high enough, ρi is over a threshold,
and SHi has a value near 1; then the agent decides to execute the clone action.
However, this does not always happen. In order to prevent the number of clones
increasing exponentially, there are two more conditions that reduce the probabil-
ity of cloning. The agent does not clone if all its neighbors are similar to it or if
the number of queries it forwards has not increased since the last analysis. Taking
into account all these parameters, the agent evaluates whether or not creating a
clone is worthwhile. The clone generated by the agent will offer the same ser-
vices and play the same roles, and the number of clones it has will be initialized
with the value of its father. The cloned agent establishes links with other agents
in the system taking into account the semantic similarity criterion. When an agent
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Leave Clone
Num. Queries 1

e−(Qi−d′)/y
1

(1+·e−(Qi−2clones)/y

Status Stable Stable
SHi SHi < rand(0, 1) SHi > rand(0, 1)

SimN(Ni) SimN(Ni) > 0 SimN(Ni) < |Ni|
∆qi ∆qi > 0
ρi ρi > δ ρi > δ

Table 1: Parameters and conditions that agents use during the making decision process about
self-organization actions. The parameters are: the number of queries received by the agent, the
status of the agent, the structural homophily SHi, the similarity of the neighborhood SimN(Ni),
the increase in the number of queries received ∆qi, and correlation value ρi.

creates a clone it resets its internal state (sti).

5. Incentives and Social Plasticity

Agents that participate in the service discovery can be cooperative or non-
cooperative. Cooperate in the service discovery scenario implies that an agent is
going to: forward queries, request services, and attend to request about its ser-
vices. If an agent has non-cooperative behavior, it means that the agent is going to
act selfishly by requesting services and offering its services, but it is not going to
forward the queries that it receives from its neighbors. We assume that each action
in our model implies a cost and, in order to promote cooperation, the forwarding
action has a reward if the query arrives to a suitable provider agent. Otherwise,
the agents lose their investment in the forwarding process. Moreover, an agent
that locates the required provider agent must pay for the service and the provider
gets a benefit for attending to the request.

Agents in a neighborhood share information about their payoffs. An agent
establishes its behavior based on its payoff and the payoff of its neighbors. An
agent calculates its payoff as follows: PO(sti) = SQi · sq−Fi · f +Pi · p−Ci · c,
where SQi,Fi,Pi, Ci is the information contained in the internal state (sti) of
an agent; sq is the benefit obtained by the agents that participate by forwarding
queries in a service discovery process that ends successfully; f is the cost of
forwarding queries; p is the benefit obtained by the agents that provide a service;
c is the cost of requesting a service. We assume that all the agents have the same
costs and benefits for the actions. Agents are rational entities that update their
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own behavior to maximize their own payoff.
The strategy followed by the agents in order to change their behavior is based

on imitation [23]. Agents take into account the payoff of their direct neighbors to
update their behavior. If an agent has a neighbor that obtains a higher payoff, the
agent changes its behavior to the behavior of its neighbor.

When the number of cooperative agents is greater than the number of non-
cooperative agents, non-cooperative agents are prone to change their behavior to
cooperate since the probability that a query ends successfully is high, and, there-
fore, cooperation receives a reward if the discovery process ends successfully.
However, when the number of non-cooperators is greater than the number of co-
operators, cooperative behavior does not always emerge. In order to facilitate
the emergence of cooperation in this scenario, in our proposed model, each agent
also has the capacity to change its relationships as time passes taking into account
which neighbors provide profitable relationships and which do not. This feature
is called social plasticity [10]. Social plasticity is the capacity of individuals to
change their relationships as time passes. The social plasticity of the agents in our
model is based on a logistic function (see Equation 2) that depends on the number
of times a neighbor has refused to forward one of its queries (i.e., it has a non-
cooperative behavior). An agent i maintains a counter per each direct neighbor
j (RQij) that stores the number of times a neighbor rejected forwarding a query
[10]. If a neighbor j decides to change its behavior and forwards queries, the
agent updates its counter (RQij) to 0.

D(RQij) =
1

1 + e
−(RQij−d)

y

, (2)

In order to find a trade-off between the number of structural changes and the
emergence of cooperation, the use of the social plasticity mechanism is affected by
the number of non-cooperator neighbors an agent has in its neighborhood. If the
number of non-cooperator neighbors is over a certain threshold, the mechanism
used to facilitate the emergence of cooperation is the social plasticity mechanism
combined with the mechanism based on incentives. Otherwise, the mechanism
used is based on incentives only.

With the combination of the social plasticity and incentives, non-cooperative
agents lose connectivity, benefits, and influence in the neighborhood. As a con-
sequence, they decide to change their behavior to the most promising behavior in
the neighborhood, which is to cooperate.
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6. Experiments

We analyzed the effects of using of self-organization and cooperation mecha-
nisms in the discovery process. The tests were performed on a set of 20 undirected
networks with an average degree of connection of 4. The degree of connection dis-
tribution follows an exponential distribution. The creation process of the network
is described with detail in [8]. The networks were populated by 1,000 agents. The
agents played one role and offered one semantic web service associated to this
role. Initially, the agents were uniformly distributed over 16 roles, which were
defined in an organizational ontology. The set of semantic service descriptions
used for the experiments was taken from the OWL-S TC4 test collection 1.

All the agents in the system had the same probability of generating service
queries. A query consisted of the identifier of the agent that creates the query,
semantic profile description of the desired provider agent, the Time To Live of
the query (TTL), and the similarity threshold ε that determines when a provider
agent is going to be considered enough similar to the target agent. A query was
successfully solved when an agent that offered a similar service (i.e., the degree
of semantic match between the semantic service descriptions was over a thresh-
old ε = 0.75) was found in a number of steps lower than the TTL of the query
(TTL = 100). Query distribution in the system was modeled as an exponential
distribution. In the experiments, we made a snapshot of the metrics every 10,000
queries in order to see the evolution of the system.

Specifically, the tests focused on a set of metrics that are meaningful for the
analysis of the performance of the system and for the effects on the service dis-
covery process when agents incorporate self-organization and cooperation mech-
anisms [14]. These metrics are: (i) evolution of cooperation in the system; (ii)
number of broken relationships as consequence of social plasticity; (iii) the evo-
lution of agents’ self-organization through changes in the links and in the popu-
lation; (iv) average number of steps required to locate an appropriate agent that
solves a query; and (v) % of queries that are solved before the TTL.

The values of the parameters used in the experiments are shown in Table 2.
The values of these parameters have been analyzed in a previous work [7]. The
results were evaluated considering two different configurations. In one config-
uration, the initial number of cooperators in the network was 600. In the other
configuration, the initial number of cooperators was 400. We compare the results
that we obtained using the proposed mechanisms with the results obtained in static

1http://www.semwebcentral.org/projects/owls-tc/
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Action Equation Param. value
leave 1/e−(Qi−d′)/y d′ = 200, y = 4

clone 1/(1 + ·e−(Qi−2clones)/y) y = 4
states ρi < δ δ = 0.7

links decay(Qij) = 1− 1/(1 + ·e−(Qij−z)/y) z = 300, y = 4
costs/rewards PO(sti) q = 0.15, p = 0.5,

r = 0.5, sq = 0.30

social plasticity D(RQij) = 1/(1 + e−(RQij−d)/y) d = 7, y = 1

Table 2: Parameters’ values use during the making decision process about self-organization actions
and cooperation emergence.

networks without these mechanisms. We considered three scenarios. In the first
scenario, the initial distribution of roles and services is uniform. In the second sce-
nario, the initial distribution of roles and services follows a normal distribution.
Finally, in the third scenario, we modify the degree of connection of the agents.

6.1. Uniform distribution of roles
In this scenario, the initial distribution of roles and services over agents follows

a uniform distribution and we analyze the effects of having an initial population
distribution that does not follow the same distribution as the service demand and
where there are non-cooperator agents.

Figure 4a shows the evolution of cooperators when the initial number of co-
operators was 400 (or 600) and the type of services and roles are distributed uni-
formly over the agents. In the first snapshots, the number of cooperators increases
at a higher rate than in the following snapshots. The main reason is that when
agents start to interact in the service discovery process, they realize that there are
neighbors that reject forwarding the queries. As consequence, agents use social
plasticity to isolate these selfish agents that do not cooperate (see Figure 4b). Once
the number of non-cooperative neighbors has been reduced, the use of social plas-
ticity it is not required and the use of incentives is enough to change the behavior
of non-cooperative agents. The use of incentives promotes cooperation but re-
quires a higher number of searches than social plasticity to promote it. The main
advantage of incentives is that this mechanism does not break links that could dis-
connect or reduce the connectivity of the network. When the initial distribution of
services follows a uniform distribution, there is not a big difference between the
configuration where there are 600 or 400 cooperative agents. The main difference
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(b) Social Plasticity.
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(d) Adaptation (600 inital cooperators).
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Figure 4: Effects of the combination of self-organization and cooperation mechanisms in the
service discovery process when the initial distribution of agents follows a uniform distribution
(µ = 8, σ = 3) and the average degree of connection of the agents is 4. We considered two con-
figurations. In one configuration the number of initial cooperators in the network was 600. In the
other configuration the initial number of cooperators was 400.
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is that the social plasticity required when there are less cooperator agents is higher.
Therefore, the number of agents that can be isolated from the giant component is
higher and for that reason, in the last iterations there are always agents that remain
with the non-cooperative behavior.

Figure 4c and 4d show the structural adaptation of the agents as well as the
adaptation of the population. We considered the initial role distribution, the dis-
tribution of roles in the snapshot 15, and the final distribution of roles in snapshot
30. In general, the self-organization mechanisms are able to adapt the structure
to the service demand. Figure 4c shows the adaptation when the initial coopera-
tors were 400 agents and Figure 5d when the initial cooperators were 600. It can
be observed that the adaptation is influenced by the degree of cooperation in the
system. The self-organization requires a higher number of search processes in the
configuration where there were 400 cooperators than in the configuration of 600
cooperators.

Figure 4e shows the average number of steps in successful searches. In the
case of 600 initial cooperators, the introduction of self-organization mechanisms
decreased the number of steps required to reach a suitable provider agent if we
compare them with the steps required when the network was static and incentives
were not considered. In the other configuration, where the initial number of co-
operators was 400, the average number of steps increased if we compare it with a
static network. It makes sense since in static networks with 400 cooperators the
only successful queries were those that were solved in the neighborhood of the
agent that generated the query.

Figure 4f shows the effects of using self-organization and cooperation mech-
anisms in the success of the service discovery process. In general, the percent-
age of queries that ended successfully was improved with the inclusion of the
mechanisms. This improvement was achieved in the first snapshots where the
self-organization and the promotion of cooperation played an important role.

6.2. Normal distribution of roles
In this scenario, we considered a different initial distribution of services and

roles over agents in order to see the effects in the self-organization and cooperation
mechanism. Moreover, we also considered an increase on the reward received by
the agents (sq = 0.6) when the number of initial cooperators was 400 in order to
see the influence of an increase in the incentives.

Figure 5a shows the evolution of cooperation when the initial number of co-
operators was 400 (or 600) and the roles of the agents were distributed following
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Figure 5: Effects of the combination of self-organization and cooperation mechanisms in the
service discovery process when the initial distribution of agents follows a normal distribution
(µ = 8, σ = 3) and the average degree of connection of the agents is 4. We considered two con-
figurations. In one configuration the number of initial cooperators in the network was 600. In the
other configuration the initial number of cooperators was 400.
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a normal distribution (see Figures 5c and 5d). Initially, the percentage of cooper-
ative agents decreases. This effect is caused by the presence of non-cooperative
agents as well as the network is not adapted to the service demand (i.e., there is a
low number of agents that provide the most demanded services). These conditions
make that the probability of reach a suitable provider decreases, and therefore,
the probability of receiving a reward. However, in the first interactions between
agents, they detect that there are selfish agents that do not forward their queries
and they start to isolate selfish agents through the use of social plasticity (see Fig-
ure 5b). Social plasticity is a mechanism that it is useful in scenarios where there
are a high number of non-cooperative agents. As the number of non-cooperators
is reduced, the use of social plasticity decreases. The social plasticity plays a key
role in the initial configuration where there are only 400 agents that cooperate.
The number of structural changes caused by the social plasticity is higher than the
changes required in the configuration where there were 600 cooperators. It can
be also observed in the configuration with 400 cooperators that the increase in the
reward that the agents received reduces the number of structural changes as well
as improves the cooperation degree.

Figures 5c and 5d show how the self-organization mechanisms adapt the pop-
ulation of the network in order to deal with a change in the service demand. The
number of agents that play the roles r0, r1, and r2 is higher than in the previous
scenario since the initial number of agents that provided was lower than in the uni-
form distribution. Therefore, the agents that offered the most demanded services
received a high number of queries and they considered the clone action earlier
facilitating the adaptation to the service demand. As in the previous scenario,
the cooperation influences the degree of adaptation. If the number of cooperator
agents is high, the degree of adaptation is higher.

The effects of the integration of self-organization and cooperation emergence
mechanisms in the service discovery process are shown in Figures 5e and 5f. Re-
garding the mean path of the service discovery process, initially, the number of
steps required to reach a suitable provider increases. This fact is due to the pres-
ence of a high number of non-cooperator agents and the initial normal distribution
of agents (i.e., there is a low number of provider agents that offer the most demand
services). As the system is self-organized according to the service demand, the av-
erage path decreases. The main difference between the configuration of 400 initial
cooperators and the configuration of 600 cooperators is that in the last one, in the
first snapshots, the average path length consists on more steps due to the coopera-
tion is higher and it is possible to find providers that are farther away. Regarding
the success rate, the self-organization and the promotion of cooperation improves
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Figure 6: Effects of the combination of self-organization and cooperation mechanisms in the ser-
vice discovery process when the initial distribution of agents follows a uniform distribution and
the average degree of connection of the agents is 6. We considered two scenarios. In one config-
uration the number of initial cooperators in the network was 600. In the other configuration, the
initial number of cooperators was 400.

the number of successful queries most of all in the first snapshots.

6.3. Influence of the average degree of connection
In this scenario, we change the average degree of connection of the agents in

the system in order to see its influence in the self-organization and cooperation
emergence mechanisms and, therefore, in the service discovery process. In gen-
eral, the results show that an increase in degree of connection has an important in-
fluence in the emergence of cooperation. An increase in the degree of connection
means that the number of paths between two agents in the network increases. As
there are more alternative paths between two agents, the effect of non-cooperative
agents is not so important. Agents are able to find alternative paths to reach the
target agent, therefore, there is a higher probability to obtain a reward for partic-
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ipating in the discovery process. Agents with higher benefit are those who coop-
erate and the non-cooperative agents change their behavior to imitate them. The
emergence of cooperation in the first snapshots is greater in networks with high
degree of connection than in networks with lower degree of connection (see Figure
6a). As the degree of connection increases, the use of social plasticity decreases
since there number of neighbors increases and the proportion of non-cooperative
agents in the neighborhood is reduced (see Figure 6b). We do not show the results
about the evolution of the adaptation since there is not a significant difference in
the adaptation of the population of the network to the service demand due to the
number of agents is the same. As the increase in the average degree of connection
of the agents improves cooperation, the success rate of the discovery process is
also improved (see Figure 6d).

7. Conclusions

Our proposal addresses the problem of self-organization and cooperation of
agents in order to deal with the service discovery when service demand changes
or selfish agents appear in open societies. Agents include self-organization mech-
anisms in order to adapt the underlying structure of the agent society to changes
in the service demand. Agents replace their relationships with neighbors that are
not being used with new structural relations with acquaintances. Agents are also
able to estimate whether or not they are playing an important role in the society
through the calculation of the similarity between the services they offer and the
services that are being demanded in the system. With this information, agents
decide to remain, leave, or clone themselves in order to adapt the population to
the service demand. We also include the use of incentives and social plasticity in
order to promote and maintain cooperation in the society. Incentives influence the
behavior of other agents and promote cooperation. Moreover, social plasticity al-
lows agents to change their structural relations based on the degree of cooperation
of their neighbors. We evaluated the integration of the proposed mechanisms in
different scenarios through a set of experiments taking into account the effects on
the evolution of cooperation, the degree of adaptation of the system structure to
the service demand, the average path length of a service discovery process, and
the percentage of successful searches. The results show that the proposed mecha-
nisms improve the service discovery performance increasing the success, reducing
the path length, and increasing the number of cooperators in the agent society.
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Appendix A. Calculation of Semantic Similarity of Agents

In the presented system, the similarity of two agents i and j is based on the
degree of match between two sets of services MS(Si,Sj) and the degree of match
of the organizational roles MR(Ri, Rj). The parameters Si and Sj are the sets of
services provided by the agents i and j, respectively. The parameters Ri and Rj

are the sets of roles played by the agents i and j.

[Sim(i, j) = (1− ϕ) ∗MS(Si,Sj) + ϕ ∗MR(Ri, Rj)]

The ϕ parameter regulates the importance of the influence of services or roles in
the total similarity of the agent with another agent.

For the calculation of MS(Si,Si), we consider each set of services Si (or Sj)
to be composed of a set of semantic concepts that can be classified as: Inputs
(Ii), Outputs (Oi), Preconditions (Pi), and Effects (Effi). The level of matching
between two sets of semantic concepts,Ci andCj , is calculated through a bipartite
matching graph (WG′).

Specifically, to calculate the similarity between two agents, four bipartite graphs
are defined, (one for each of the components of services present in the sets Si and
Sj): Inputs (Ii, Ij), Outputs (Oi, Oj), Preconditions (Pi, Pj), and Effects (Effi, Effj).
The linear combination of the WG′ of each set of concepts gives the value of the
homophily between agents (see Equation Appendix A, where the parameters α
and β assign different weights to the components of the equation).

MS(Si,Sj) = α
[
β ∗WG′I

+ (1− β)WG′O

]
+ (1− α)

[
β ∗WG′P

+ (1− β)WG′Eff

]
The degree of match MR(Ri, Rj) between the set of roles Ri and Rj played

by the agents i and j is defined as the maximum degree of match between the
semantic concepts cati and catj that describe the roles ri ∈ Ri and rj ∈ Rj for all
possible pairs (ri, rj).

MR(Ri, Rj) = max
ri∈Ri,rj∈Rj

rmatch(cati, catj)
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The value obtained in the calculation of MS(Si,Sj) and MR(Ri, Rj) range in
the interval [0,1], where 1 indicates that the services/roles are the same. For a
more detailed description of the calculation of semantic similarity of agents we
refer the reader to [8].
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