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Abstract

New systems can be designed, developed, and managed as societies of agents
that interact with each other by offering and providing services. These sys-
tems can be viewed as complex networks where nodes are bounded rational
agents. In order to deal with complex goals, agents must cooperate with
other agents to be able to locate the required services. The aim of this paper
is to formally and empirically analyze under what circumstances cooperation
emerges in decentralized search for services. We propose a repeated game
model that formalizes the interactions among agents in a search process where
each agent has the freedom to choose whether or not to cooperate with other
agents. Agents make decisions based on the cost of their actions and the
expected reward if they participate by forwarding queries in a search process
that ends successfully. We propose a strategy that is based on random-walks,
and we study under what conditions the strategy is a Nash Equilibrium. We
performed several experiments in order to evaluate the model and the strat-
egy and to analyze which network structures are the most appropriate for
promoting cooperation.

Keywords: Networks, distributed service discovery, Nash Equilibrium,
Repeated games
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1. Introduction

Social computing has emerged as a discipline in different fields such as
Economics, Psychology, and Computer Science. Computation can be viewed
as a social activity rather than as an individual one. New systems are de-
signed, developed, and managed as virtual societies of independent entities
or agents that offer services and interact with each other by providing and
consuming these services [23]. These systems and applications can be for-
mally represented through formal models from the field of Complex Networks
[27]. This area provides a theoretical basis for the development of models
that help us to reason about how distributed systems are organized [19].
Complex Network models have been used in different contexts such as so-
cial networks (collaboration, music, religious networks), economic networks
(trade, tourism, employment networks), Internet (structure and traffic net-
works), bio-molecular networks, and computer science networks among others
[5, 26].

In the complex systems already mentioned, one of the challenges is the de-
sign of efficient search strategies to be able to locate the resources or services
required by entities in order to deal with complex goals [2, 26, 9]. Taking into
account the autonomy of the entities that participate in the search process,
three levels of search decentralization could be considered. At the first level,
we assume that the search process is centralized when there is a common
protocol that is adopted by all the entities of the system and that this proto-
col dictates the actions that must be followed (i.e., the protocol specifies the
entity that starts the process, the sequence of participation of entities, and
the target). At the second level, this protocol can be relaxed. The entities
adopt that protocol and carry out the same set of actions, but the search
path (i.e., the sequence of entities that participate in the search process) is
not specified. At the third level, a decentralized search can be considered
when there is a protocol adopted by all the entities that specifies the set of
available actions. However, these entities can decide whether or not they are
going to follow the protocol. It would not be desirable to impose the same
behavior on all of the nodes if it takes away their individual choice, (i.e.,
it would be desirable for all of the nodes to follow the protocol willingly).
Therefore, we look for a concept of stability within the strategies of the enti-
ties of the system. This concept, which comes from Game Theory, is known
as the Nash Equilibrium.

There are several scenarios where efficient decentralized search strategies
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are required. Some of these scenarios are wireless ad-hoc networks where
nodes rely on other nodes to forward their packets in order to reach the
destination node (e.g., such as file sharing in P2P systems, streaming ap-
plications, discussion boards, on-line auctions, or overlay routing). In this
paper, we consider a P2P system as an example of an application scenario.
The P2P system is modeled as a multi-agent system. In this scenario, agents
act on behalf of users by playing the role of a service provider or service
consumer (see Figure 1). Agents that play the role of service consumers
should be able to locate services, make contract agreements, and receive and
present results [34]. Agents that play the role of service providers should be
able to manage access to services and ensure that contracts are fulfilled. By
considering the system as a network, it is assumed that all of the information
is distributed among the agents. Since agents only have a local view of the
services provided in the network, the collaboration of other agents is required
in order to reach the target. For instance, in the scenario presented in Figure
1, if the agent that acts on behalf of ClientA (agent ClientA) requires a ser-
vice to see a film without paying, it should interact with the provider agent
of the service P2PFilms. However, agent ClientA has local knowledge about
the available services and their providers (i.e., it only knows about Netflix
and rentalCar services). Therefore, agent ClientA starts a search process for
a provider agent that performs the task of P2PFilms service. To locate the
provider, agent ClientA needs the collaboration of the rest of the agents in
the network. We assume that there is at least one provider agent that is able
to perform the task.

During a search process, agents can carry out a set of actions: create a
task that must be performed by a qualified agent (i.e., start a search process),
forward the task to one or several neighbors if they do not know how to solve
the task, or perform the task if they can provide the required service. The
cooperation of agents forwarding queries plays a critical role in the success of
the search process [8]. This action facilitates the location of a resource based
on local knowledge. However, in our scenario, this action has an associated
cost and agents are free to decide whether or not the forwarding action is
profitable for them based on its cost and the expected reward.

In this paper, we propose a model to formally describe the distributed
search for services in a network as a game. Specifically, we use the repeated
game framework to model both the process that a task follows through the
network and the global task-solving process. In the former, each period is a
decision stage for the agent who is in possession of the task. In the latter,
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Figure 1: An example of a search scenario.

a project is generated in each period and randomly assigned to an agent in
the network.

Our intention is to analyze the relationship between the cost of forwarding
the task and the reward that agents obtain later when the task is solved in
order to guarantee that cooperation is a stable behavior in the game. We refer
to this reward as α. The cost of the search process and the reward required
to promote cooperation among agents depends on the network structure and
the paths that the tasks follow (i.e., the search paths). We establish a bound
for the length of the search process using Mean First Passage Time (MFPT),
which is the average number of steps necessary to go from an agent i to
another agent j in the network. Therefore, the structure of the network also
characterizes α through the MFPT, and, consequently, the network structure
influences the agents’ behavior. In order to verify this, we ran simulations to
contrast the possible differences among network structures. The results show
that for a set of networks with the same structural properties (i.e., number
of nodes, edges, and average degree of connection), the network topology
that offers the best results for the proposed search model is the scale-free
topology. This is because the diameter of scale-free topology is closer to the
limit of steps in the search process than other network structures.

The paper is organized as follows. Section 2 presents other works related
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to emergence of cooperation in distributed environments. Section 3 intro-
duces a repeated game model to formalize the search process of services in
agent networks. In Section 4, some strategies that agents can follow in the
repeated game are analyzed in order to determine whether or not they are
Nash Equilibrium profiles. Section 5 describes several experiments that we
performed to empirically evaluate the theoretical results in different network
structures. In these experiments we also analyze the influence of the network
structure and to determine which structure facilitates the emergence of co-
operation in the proposed repeated game. Finally, Section 6 concludes the
paper.

2. Related Work

Nowadays, centralized approaches cannot deal with current large-scale,
highly dynamic systems such as streaming media systems [33], systems for
sharing and distributing files [36], or telephony [15]. Weaknesses such as
bottlenecks, lack of robustness, and the need for huge amounts of memory
to store information about available resources make centralized approaches
unsuitable for coping with dynamic system requirements. Distributed ap-
proaches provide a set of features that make them appropriate for dealing
with resilience to faults and attacks, decentralized content management, or
self-organization.

Distributed systems are populated by entities that deal with complex
tasks and require services or resources that are provided by other entities in
order to fulfill their goals. Therefore, search strategies are required to be able
to locate them. There is a set of search algorithms that are based on Dis-
tributed Hash Tables (DHT) [11]. The main advantage of these algorithms
is that the search process is bounded to O(log(n)) where n is the number
of nodes in the network. Nevertheless, the maintenance of the indexes when
nodes join and leave the system affects the performance of the system. These
updates imply the interchange of messages among nodes; therefore, the sys-
tem could be in an inconsistent state during a period of time due to outdated
references among nodes.

Other works in the literature consider a decentralized search where each
node only has local information, all the nodes are considered equal, and
there is an arbitrary topology. These structures provide more flexibility and
adaptability. However, nodes need the collaboration of the others in order
to succeed in the search process. The search approaches in decentralized
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systems use informed or blind search strategies for locating services or re-
sources. Informed strategies exploit the information located in each node
to improve the navigation of the network [7]. These strategies are domain
dependent. Blind search strategies do not consider information stored in
each node. The main advantage is that they can be applied in several do-
mains because they do not require specific knowledge. An example of a blind
search strategy is the use of flooding mechanisms [22]. The main drawback
of flooding mechanisms is the overall communication traffic overhead.

Random-walk search strategies have been presented as an alternative to
flooding strategies [4, 37, 22] since they reduce the traffic in the system and
might provide better results [24, 39]. A random-walk search algorithm ran-
domly selects a neighbor each time to forward the message to [14]. There are
many search proposals that navigate networks using random-walks strategies
since they do not require specific knowledge and can be applied in several
domains. Some of these works have introduced modifications such as using
random-walk strategies from multiples sources [40, 31] or adding information
about routes [20, 1, 3] in an attempt to improve the search efficiency. Struc-
tural heterogeneity affects the nature of the diffusive and relaxation dynamics
of the random walk strategy [28], and the biased random-walk strategy based
on preferential transition probability [12].

One of the common assumptions in network search is that all of the agents
have homogeneous behavior and that all of them are going to cooperate by
forwarding messages. However, this does not correspond with real scenarios.
In real, large-scale networks, decisions are often made by each agent inde-
pendently, based on that agent’s preferences or objectives. Game Theory
models are well suited to explain these scenarios [25]. Game Theory studies
the interaction of autonomous agents that make their own decisions while
trying to optimize their goals. Game Theory provides a suite of tools for
modeling interactions among agents with different behaviors [35].

There are works in the area of Game Theory that focus on the routing
problem in networks where agents are characterized by selfish behavior [6].
Specifically, this problem has been studied in wireless and ad-hoc networks
[35, 25, 10]. To deal with selfish agents, numerous approaches use reputa-
tion [18] (i.e., techniques based on monitoring the nodes’ behavior from a
cooperation perspective) or price-based techniques [17] (i.e., a node receives
a payment for its cooperation in forwarding network messages and also pays
other nodes which participate in forwarding its messages). One of the draw-
backs of reputation systems is that nodes whose reputation values are higher
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than a threshold are treated equally. Therefore, a node can maintain its
reputation value just above the threshold in order to obtain the same benefit
as nodes with higher reputation levels. One of the problems of price-based
techniques is that they are not fair with nodes that are located in regions
with low traffic that have few opportunities to earn credit. Li et al. [21]
integrate both techniques and propose a game theory model to analyze the
integrated system. However, this approach does not consider the influence
of the underlying structure in the emergence cooperation.

To understand the social behavior of systems, it is important to consider
the network structure. There are several works that analyze the influence
of the network structure when the agents of the networks do not follow ho-
mogeneous behavior. These works study how structural parameters such as
clustering or degree distribution affect the emergence and maintenance of
cooperative behavior among agents [32, 30]. Hofmann et al. [16] present
a critical study about the evolution of cooperation in agent societies. The
authors conclude that there is a dependence of cooperation on parameters
such as network topology, game interaction, update rules of states, and initial
fraction of cooperators.

The proposal presented in this paper analyzes the problem of cooperation
emergence ‘through a Game Theory model’ in the context of decentralized
search. Our approach differs from other approaches in several ways. First, we
considered a game that fits the characteristics of decentralized search better
than other games proposed in the literature (which are based on the often
studied Prisoner’s Dilemma). Second, agents’ decisions about cooperation
are based on a utility function that takes into account the properties of net-
work topology. Moreover, the utility function also considers a limit to the
number of possible steps to reach the target agent. This feature is important
in distributed systems in order to avoid traffic overhead. Third, the strategy
that agents follow is based on a search mechanism that is often used in net-
work navigation and does not require specific domain knowledge. Therefore,
the model can be easily applied in different search contexts. Finally, to pro-
mote cooperation, instead of using reputation or price-based mechanisms, we
used a mechanism that is based on incentives provided by the system. We
formally and experimentally determine the minimum required reward that
satisfies the stability condition of Nash Equilibrium.
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3. The Model

Consider a finite set of agents N = {1, 2, . . . , n} that are connected by
undirected links in a fixed network g. We use the adjacency matrix to repre-
sent the network, which is denoted by M . A link between agents i and j is
represented by Mij = 1, and by Mij = 0 if there is no link. The set of neigh-
bors of agent i is Ni = {j|Mij = 1}. For simplicity, we assume that Mii = 0
so all neighbors in Ni are different from i. Therefore, the cardinality of the
set Ni is the number of neighbors that agent i has (its degree of connection),
which is denoted by ki = |Ni|.

We consider that each agent has a type that represents its ability or the
service that it can provide, which we denote by θi, where θi ∈ [0, 1]. Agents
are aware of the realization of their own type, but not of the other agents’
types. Let ρ ∈ [0, 1] be a task or project to be solved by one of the agents
in the network. An agent i can solve ρ if, for a fixed ε, |θi − ρ| ≤ ε (i.e., its
type θi is ‘similar’ to the task to be solved). We assume that for each ρ there
exists a set of agents denoted by K∗ρ such that ∀k∗ ∈ K∗ρ : |θk∗ − ρ| < ε and
|K∗ρ | ≥ 1.

We define an n-person repeated game Γ∞ρ that takes place in the network
g. Each agent has a set of actions Ai = {∅, 1, 2, . . . , ki,∞}, where ∅ means
the agent does nothing; ∞ means the agent solves ρ, and j in {1, 2, . . . , ki}
means the agent forwards the task to j, one of the agent’s ki neighbors.

In the first stage of the game (t = 1), a task ρ is uniformly and randomly
generated and assigned to a uniformly and randomly selected agent denoted
by s. If s ∈ K∗ρ (i.e. s is capable of solving the task), chooses action ∞, the
game ends and s gets a payoff of 1−|ρ−θs|. Note that the closer the agent’s
type θs and the task ρ are, the higher the utility obtained. If s does not
solve ρ, either s chooses to do nothing (action ∅), (ending the process and
getting a payoff of 0), or s forwards the task to one of its neighbors (action
in {1, 2, . . . , ki}) with a cost c, where 0 < c < 1. Meanwhile, all of the other
agents (who do not have the task) choose action ∅ (getting a payoff of 0 in
that stage).

If ρ is forwarded to an agent i, the same process faced by s is now con-
fronted by i. However, if i solves the task, all of the agents who previously
forwarded ρ get a payoff α, where c ≤ α (see Figure 2). The parameter α
can be considered to be as a compensation payoff for collaborating in the
solving process, which is greater than the cost of forwarding but lower than
the payoff for solving the task. If i chooses to do nothing, the solving process
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Figure 2: An example of a search process in which agent j solves ρ.

ends unsuccessfully and every agent gets a payoff of 0 in the last stage. Note
that there may be some agents who paid the cost of forwarding and they
may end up getting no compensation at all.

The utility function of an agent i at stage t is formally defined as:

uti(θi, a
t
i, a

t
−i, s) =


1− |ρ− θi| if ati =∞
−c if ati ∈ {1, . . . , ki}
0 if ati = ∅ ∧ @t′ < t : at

′
i ∈ {1, . . . , ki}

α if ati = ∅ ∧ ∃t′ < t : at
′
i ∈ {1, . . . , ki} ∧ ∃j ∈ N : atj =∞

where t is the stage, θi is the type of agent i, ati is the action agent i chooses at
stage t, at−i are the actions at state t of all other agents (i.e. atj : ∀j ∈ N−{i}),
and s is the node where ρ starts at t = 1. Take into account that agents can
choose among all possible actions only if they have the task, otherwise they
can only play ∅.

In the next section, we compare different strategies that may be Nash
Equilibrium of the game Γ∞ρ . Note that in the game Γ∞ρ , the agent s in
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which ρ starts does not affect the analysis1; therefore, the parameter s can
be omitted in uti and ui when no ambiguity occurs.

At stage t, agents are informed of actions that are chosen in previous
stages of the game. Therefore, we say that the game Γ∞ρ is under perfect
information. Formally, let H t be the cartesian product of A (t − 1)-times,
(i.e., H t = At−1), with the common set-theoretic identification A0 = �, and
let H = ∪t≥0H t

∞. The history H t shows the path that ρ has taken through
the network until stage t. A pure strategy σi for agent i is a mapping from
H to Ai, σi : H → Ai. Obviously, H is a disjoint union of H t, t = 1, . . . , T
and σti :H

t → Ai as the restriction of σi to H t. In this particular game, note
that an agent only cares about whether or not ρ reaches it at stage t (i.e.,
H t−1). Therefore, σi is a Markovian strategy since it only takes into account
the previous stage. Actually, any possible history in H t such that the project
ends up in agent i has the same effect on decision of agent i. Therefore, those
histories in H t belong to an equivalence class.

The utility function for agent i in the game Γ∞ρ is formally defined as:

ui(θi, σi, σ−i, s) =
∑
t>0

uti(θi, a
t
i, a

t
−i, s) (1)

where σi is the strategy played by agent i and σ−i is the strategy profile
composed by the strategies played by all agents except by agent i.

An action profile (σ∗1, . . . , σ
∗
n) is a Nash equilibrium in the network game

Γ∞ρ , if and only if no player has an incentive to change its strategy assuming
other players follow their strategies. In other words, for any player i, there
is no strategy σ̂i 6= σ∗i that gives agent i a higher utility than σ∗i . Formally,

ui(θi, σ
∗
1, . . . , σ

∗
n) ≥ ui(θi, σ

∗
1, . . . , σ̂i, . . . , σ

∗
n), ∀ σ∗i 6= σ̂i, i ∈ N, and θi ∈ [0, 1].

The above utility criterion depends on where the process starts. Now,
consider an extension of the previous model that satisfies the condition of
independence on where the project starts. Let us define a new repeated game

1If the task does not reach agent i, s does not affect its payoff for obvious reasons.
If the task happens to reach agent i, two things can happen: agent i solves it because
|ρ − θi| ≤ ε, independently of s, or the task is forwarded. Since all forwarding strategies
that agent i can follow share the same previous path until agent i is reached, s does not
affect this comparison
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denoted as (Γ∞ρ )N which consists of N repetitions of the game Γ∞ρ starting in
a different node at each repetition. The utility function in the game (Γ∞ρ )N

for an agent i is formally defined as:

vi(θi, σi, σ−i) =
1

N

N∑
s=1

ui(θi, σi, σ−i, s) (2)

The set of equilibrium payoffs is the set of any payoff vector such that
there exists an equilibrium strategy profile with the associated payoff vector.
In order to characterize this, we make use of a well-known result called the
Folk Theorem. The Folk Theorem states that the set of feasible and indi-
vidual rational payoff vectors characterizes the set of equilibrium payoffs of
the repeated game [13]. To define the set of feasible and individual rational
payoffs, we first need to define first the min-max utility in pure actions. This
level is sometimes called the reservation payoff, which is reached when play-
ers play their min-max action. The min-max action for agent i is the one
that guarantees the highest possible payoff given the action profile a−i that
is the worst case scenario for agent i. Formally,

ūi = min
a−i

max
ai

ui(θi, ai, a−i), ai ∈ Ai, a−i ∈ A−i (3)

In our set-up for the one-shot payoff function, the min-max strategy is ∅;
therefore, the min-max level is 0.

We now define the set of feasible payoff vectors F as any payoff profile in
the convex hull of the set of possible payoff profiles of the game. The convex
hull of a set X is the smallest convex set that contains X and is denoted by
conv{X}. Formally,

F := conv{x | ∃a ∈ A with u(a) = x} (4)

The set of strictly and individually rational payoff vectors (relative to the
min-max value in pure strategies) is composed by the payoff vectors that
guarantee at least ūi for all agents. Formally:

V := {x = (x1, . . . , xn) ∈ F : xi ≥ ūi ∀i ∈ N} (5)

The Folk Theorem states that any payoff profile in V can be implemented
as a Nash equilibrium payoff if the discount factor δ applied to the utility of
agents in each period is large enough. In the game Γ∞ρ , we assume that all
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agents are aware that the task will be solved soon enough to compensate the
effect of δ; therefore, we consider the largest possible value for it which is 1.

The intuition behind the Folk Theorem is that any combination of payoffs
where each agent gets at least its min-max payoff is sustainable in a repeated
game, provided that each agent believes that there is a high probability that
the game will be repeated. For instance, the punishment imposed on an
agent who deviates is that the agent will be held to its min-max payoff for
all subsequent rounds of the game. Therefore, the short-term gain obtained
by deviating is offset by the loss in payoff in future rounds. Of course, there
may be other less radical (less grim) strategies that also lead to the feasibility
of some of those payoffs.

The good news from the Folk Theorem is that a wide range of payoffs
may be sustainable in equilibrium, which it allows us to state that there exist
equilibrium strategy profiles of the game Γ∞ρ . The bad news is that may be
a multiple number of equilibria. In the next section, we examine whether or
not some well-recognised strategies are indeed equilibrium strategies in Γ∞ρ .

4. Equilibrium strategies

In this section, we study pure Nash Equilibrium strategies of the game
Γ∞ρ . Namely, we start defining the Nobody works strategy, which basically
consists of doing nothing, even in the case that an agent can perform the
task. We prove that the strategy profile where all agents play the Nobody
works strategy is not a Nash Equilibrium of the game. Then we consider the
so-called random-walk strategy. In this strategy, when an agent is not able
to solve the project, it uniformly and randomly chooses one of its neighbors
to forward the task to. We establish the conditions under which the strat-
egy profile in which every agent plays the random-walk strategy is a Nash
Equilibrium of the game. We enrich the model by adding a threshold for the
number of times that a task can be forwarded, and we also study under what
conditions a random walk strategy profile is Nash Equilibrium in the game
after adding this new condition.

4.1. Nobody works

One possible strategy is the one we call Nobody works, in which every
agent always chooses the action ∅ and consequently gets a payoff of 0. One
of the assumptions in our model is that, for all tasks ρ, there exists at least
one agent k∗ that is able to perform it. From our payoff criterion, we can
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state that, in some period t, the project will start at agent k∗. In that case, if
agent k∗ chooses the ∞ action (doing the project), agent k∗ gets a payoff of
1− |ρ− θk∗| > 0; therefore, the Nobody works strategy is not an equilibrium
strategy for agent k∗; therefore, the action profile where all agents choose
such a strategy is not a Nash Equilibrium of the game Γ∞ρ .

4.2. Random Walk

In this subsection, we study the case where all agents play a behavioral
strategy denoted by σ∞i , which is a mapping from the history they observe
until the present period to a probability distribution over their action set,
which leads to the well-known dynamics of “random-walk”. Formally:

σ∞i : H t−1 → ∆(Ai) (6)

We call this behavioral strategy the random-walk strategy. This strategy
consists in doing nothing if no task arrives to an agent (action ∅), solving the
task if the agent is capable of doing so (action ∞), and executing the for-
warding action when the task arrives and the agent cannot solve it, choosing
uniformly and randomly one of its neighbors to forward the task to.

This strategy is a “myopic” strategy since agents do not update their
expected payoffs. Each agent i uniformly and randomly chooses one of its
neighbors to continue searching for an agent k∗ that can solve the task ρ.
Recall that in our game, for all tasks ρ, there exists at least one agent who
can solve it (i.e., |K∗| ≥ 1 where ∀k∗ ∈ K∗ : |θk∗−ρ| < ε). As a consequence
of the random-walk strategy, we can assert the existence of a finite time
0 ≤ t̃ < ∞ such that at̃k∗ = ∞ [29]. Therefore, given a task ρ, the achieved
payoff for each agent first depends on whether or not the agent was part of
its solving path. If an agent i did not take part in the process, the agent gets
a payoff of 0, which is the min−max payoff.

Now suppose that i is part of the solving path. Let us define some pa-
rameters that take part in the utility function. We refer to the probability
of an agent being capable of doing the task as γi. Since agents’ types and ρ
are drawn from a uniform probability distribution, independently, γi is the
same for all agents and we simply call γ. The previously defined parameters
α and c are the reward and the cost of forwarding the task, respectively, and
P∞j is the probability that the task eventually reaches agent j ∈ {1, . . . , n}.
To abbreviete purposes, let us denote the probability P∞{k∗∈K∗} of reaching
any k∗ ∈ K∗ simply as P∞k∗ .
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Hence, the utility function of the game Γ∞ρ for agent i is:

ui(θi, σi, σ−i) = P∞i (γ(1− |ρ− θi|) + (1− γ)(P∞k∗ (α− c) + (1− P∞k∗ )(−c)))
(7)

The following proposition states that the strategy profile in which every
agent plays a random-walk strategy is a Nash equilibrium in the game Γ∞ρ .

Proposition 1. There exists α∗ > 0 such that the strategy profile (σ∞1 , . . . , σ
∞
n )

is a Nash Equilibrium in Γ∞ρ starting at any node s ∈ {1, . . . , N}.

Proof. Let Ñ = mini∈N Ni.
We can suppose w.l.o.g that the project starts at s ∈ {1, . . . , N} and

agent i is active in the search process. Note that if agent i can solve the
project (i.e., |θi − ρ| < ε), it is always the best response for agent i to solve
it. Moreover, when agent i is not active in the search process (the solving
path does not reach agent i), the best response is the action ∅. Therefore,
the only situation in which the agent i could improve its utility is when it is
active in the search process but cannot solve the task itself. Then the most
profitable action would be to change the search process mechanism from
random-walk to a deterministic one. This means that agent i either plays ∅
or forwards ρ to a fixed neighbour (denoted by ik) instead of forwarding ρ to
a randomly chosen neighbor.

Let’s first assume that agent i always plays ∅ for any history if it cannot
know how to solve the task. We denote the above strategy by σ∅i . The utility
function is:

ui(θi, σ
∅
i , σ

∞
−i) = P∞i (γ(1− |ρ− θi|))

which is strictly smaller than

ui(θi, σ
∞
i , σ

∞
−i) = P∞i (γ(1− |ρ− θi|) + (1− γ)(P∞k∗ (α− c) + (1− P∞k∗ )(−c))

if α ≥ c

P∞k∗
for all i. Let α = c

∑
i∈N Ni

Ñ
; then the above inequality holds since

P∞j =
Nj∑

i∈N Ni
.
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Now, consider the strategy that agent i always forwards the project to its
neighbour ik when the agent cannot afford the task. The above strategy by
σ∅i . Then, the utility agent i gets is:

ui(θi, σ
ik
i , σ

∞
−i) = P∞i γ(1− (ρ− θi)) + (1− γ)(P̃∞k∗ (α− c) + (1− P̃∞k∗ )(−c)

Note that probability P̃k∗ could be zero since cycles may emerge (P̃k∗ <
Pk∗); therefore ui(θi, σ

ik
i , σ

∞
−i) ≤ ui(θi, σ

∞
i , σ

∞
−i).

The above proof allows us to extend the result to the game (Γ∞ρ )N :

Corollary 1. There exists α∗ > 0 such that the strategy profile (σ∞1 , . . . , σ
∞
n )

is a Nash Equilibrium in (Γ∞ρ )N .

Now we enrich the model by introducing a “time” condition to solve the
task. It makes sense to limit the rewards for efforts to solve or forward the
task based on a time limit within which the task must be solved (i.e., efforts
are only rewarded if the task is solved in less than a certain number of steps).

4.3. Random-walk strategy with a finite number of steps

An interesting measure for establishing the limit of steps that a task ρ
can take to be solved is the Mean First Passage Time (hereafter MFPT).
The MFPT between two nodes i and j of a network is defined as the average
number of steps to go from i to j in that particular network [38]. Therefore,
we define the strategy στi for an agent i as the one which consists in forwarding
the task to a randomly selected neighbor only if it has advanced a number
ti < τ times, where τ is the average MFPT of the network (which we formally
define below). Note that now the full path the task has taken until it reaches
an agent matters to him, so now the whole set H t influences its utility and
not only the previous step H t−1.

According to [38], the MFPT from any agent to a particular agent j in a
network is defined as:

〈Tj〉 =
1

1− πj
N∑
i=1

πiTij =

=
1

1− πj
N∑
k=2

(
1

1− λk
ψ2
kj

N∑
i=1

ki
kj

)
− 1

1− πj
N∑
k=2

(
1

1− λk
ψkj

√
K

kj

N∑
i=1

ψki

√
ki
K

)
(8)
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where ki and kj are the degree of agents i and j, respectively, ψk is the kth
eigenvector of S corresponding to the kth eigenvalue λk and πj = kj/K (with

K =
∑N

j=1 kj). The kth eigenvector value λk is calculated considering that

S = D−
1
2MD−

1
2 , M being the adjacency matrix of the network, D being the

diagonal degree matrix of the network, and the eigenvalues being rearranged
as 1 = λ1 > λ2 ≥ λ3 ≥ . . . ≥ λN ≥ −1).

According to [38],
∑N

i=1 ψki

√
ki
K

=
∑N

i=1 ψkiψ1i = 0. Thus, the second

term is equal to 0. So

〈Tj〉 =
1

1− πj

N∑
k=2

(
1

1− λk
ψ2
kj

N∑
i=1

ki
kj

)
=

1

1− πj
K

kj

N∑
k=2

1

1− λk
ψ2
kj (9)

We define the maximum number of steps that must be taken for every
task ρ to be solved as the average 〈Tj〉 for all j ∈ N , which we denote as τ .
Formally:

τ =
N∑
j=1

〈Tj〉
N

(10)

We now define a new game Γτρ. In this game, if it takes more than τ steps
to solve the task, the game ends and the collaborating agents get no reward.
In the following, we explain the equilibrium strategies for the game Γτρ.

Let us define some new parameters that play a role in the new game: the
number of steps a task has advanced until it reaches agent i is ti; Q

τ−ti
i,k∗ is

the probability that the task reaches an agent k∗ starting from agent i in
τ − ti or less steps, and P τ

s,i is the probability that the task reaches an agent
i starting from agent s in τ or less steps.

In order to formally define P τ
s,i, we use the adjacency matrix of the network

(denoted as M) and one of its properties which states that the value at (i, j)
position of the matrix Mn indicates the number of paths of length n between
i and j in that network. P τ

s,i can be defined as the number of paths of length
τ or less between s and i divided by the total number of paths with the
same length starting at s but ending at any possible agent j of the network.
Formally:
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P τ
s,i =

τ∑
t=1

(M t)si

N∑
j=1

(
τ∑
t=1

(M t)sj

) (11)

Let us define rτ−tii , or simply ri, as the number of agents that the task
can reach starting from i in τ − ti or less steps. For this purpose, we use the
Reachability matrix, (denoted as R), which is defined ∀i, j ∈ N , as

(Rτ−ti)ij =


1 if there exists at least one path between i and j

of length τ − ti or less

0 otherwise

(12)

The process for obtaining R from the adjacency matrix is straightforward.
Then, we formally define ri as

ri =
N∑
j=1

(Rτ−ti)ij (13)

To compute Qτ−ti
i,k∗ , let us define the probability that none of the reachable

agents for agent i is able to solve the task, which is (1− γ)ri . Then Qτ−ti
i,k∗ is:

Qτ−ti
i,k∗ = 1− (1− γ)ri (14)

Hence, the utility function of the game Γτρ for an agent i when all agents
play the strategy στ is

ui(θi, σ
τ
i , σ

τ
−i, s) = P τ

s,i

(
γ(1− |ρ− θi|) + (1− γ)(Qτ−ti

i,k∗ (α− c) + (1−Qτ−ti
i,k∗ )(−c)

)
(15)

Proposition 2. There exists α∗ > 0 such that ∀α > α∗ the strategy profile
(στ1 , . . . , σ

τ
n) is a Nash Equilibrium in the game Γτρ.
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Proof. The proof proceeds exactly like the proof for Proposition 1 but sub-
stituting the proper probabilities P τ

s,i and Qτ−ti
i,k∗ defined in 11 and 14, respec-

tively.
We find a bound for αi for which agent i chooses strategy στ instead of

σ∅. Specifically, αi ≥
c

Qτ−ti
i,k∗

. By substituting 14, we have

αi ≥
c

1− (1− γ)ri
(16)

The fact that αi depends on ri implies that each agent has its own bound
for α which depends on the agent’s connectivity. Let r = maxi∈N ri. Note

that
c

1− (1− γ)r
>

c

1− (1− γ)ri
for all i since 0 < (1−γ) < 1 and log((1−

γ) < 0.
To complete the proof, let us recall the probabilities P̃ τ

s,i and Q̃τ−ti
i,k∗ and

the strategy σiki that agent i always forwards the task to the same agent ik.
Since P̃ τ

s,i ≤ P τ
s,i and Q̃τ−ti

i,k∗ ≤ Qτ−ti
i,k∗ , it is straightforward to show that, for

α∗ =
c

1− (1− γ)r
, we have that ui(θi, σ

ik
i , σ

τ
−i) ≤ ui(θi, σ

τ
i , σ

τ
−i).

The above proof allows us to extend the result to the game (Γ∞ρ )N :

Corollary 2. There exists α∗ > 0 such that the strategy profile (στ1 , . . . , σ
τ
n)

is a Nash Equilibrium in the game (Γτρ)
N .

The fact that α depends on ri means that the network structure has a
deep impact on α bounds. In highly clustered networks, ri is high for each
agent i, and, consequently, αi is low. The opposite occurs in low clustered
networks (e.g., Erdös-Renyi networks) where αi is uniform among all agents.
In networks with a non-uniform degree distribution (e.g., scale-free networks),
average α may be similar to the α for Erdös-Renyi networks, but it varies
significantly between hub and terminal agents.

5. Experiments

The goal of the experiments is to validate the proposed model not only
formally, but also through a set of experiments considering both different
types of network topologies as well as forwarding strategies. Therefore, the
aim of the experiments is twofold: i) to determine which network topology
enhances the emergence of cooperation in the proposed model; ii) to evaluate
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the suitability of the proposed forwarding criterion for the search model and
several network topologies.

In this section, we evaluate the proposed mathematical model for service
search and compare it with other search strategies in different network struc-
tures. We analyze the influence of the structural parameters of networks in
the required reward α to promote cooperation (i.e., forwarding tasks) in the
search process. To evaluate the influence of network structure, we compare
the success rate of the searches and the average agent utility in different net-
work topologies. The network topologies considered in the experiments are:
random, scale-free, and small-world. We also analyze the criterion used in
the forwarding process. To evaluate this criterion, we compare the success
rate obtained in the search process when the forwarding criterion is the one
proposed in the paper (i.e., random) with a domain-independent criterion
based on the degree of neighbor nodes.

5.1. Experimental Design

The experiments are executed over undirected networks with 100 agents.
We also tested different sizes of networks, but the conclusions were similar
to those obtained with 100 agents and we do not include them here. The
structural properties of the networks are shown in Table 1. Each agent has a
type (i.e., service) θi ∈ [0, 1] that represents its degree of ability. We assume
that θi is uniformly distributed among the agents. A task ρ is generated and
assigned to an agent following a uniform probability distribution. Each agent
has a set of actions to choose from when it receives a task: doing the task if the
similarity between its ability and the task ρ is under a threshold |θi− ρ| < ε;
forwarding the task based on the expected reward (Formula 16); or doing
nothing. The forwarding action has an associated cost c = 5. A task ρ is
successfully solved when an agent has an ability that is similar enough to the
task ( |θi − ρ| < ε) in less than τ steps. For the experiments τ = log MFPT.
We use this concave transformation to obtain clear results and illustrate the
impact on the parameter with the structure of the network. The value for
the ε parameter is 0.1. In order to motivate agents to solve a task ρ, instead
of forwarding it to others, the value of the reward obtained when an agent i
solves a task ρ (i.e., 1−|θi−ρ|) is multiplied by a constant in order to obtain
a higher reward than the reward α associated to the forwarding action. We
executed each experiment over 10 networks of each type and we generated
1,000 tasks ρ in each network. All agents chose their action following the στ

strategy.
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topology N edges avDg std clust dens τ = log MFPT d diameter/τ

Random 100.0 200.00 4.00 1.46 0.02 0.04 5.00 7.09 1.418
100.0 300.00 6.00 1.82 0.03 0.06 4.00 5.00 1.25

Scale-Free 100.0 197.00 3.94 3.94 0.02 0.04 5.00 5.09 1.09
100.0 293.00 5.86 5.08 0.04 0.06 5.00 4.27 0.854

SmallWorld 100.0 200.00 4.00 1.02 0.08 0.04 5.00 7.55 1.55
100.0 300.00 6.00 1.27 0.10 0.06 4.00 5.45 1.36

Table 1: Network structural properties: topology, number of agents, number of edges,
average degree of connection of agents, standard deviation of the degree distribution,
clustering, density, τ = log MFPT, diameter, ratio diameter/τ .

In the experiments, we considered two different criteria in order to forward
the query to a neighbor. One criterion is a random selection that has been
used in the mathematical model presented in this paper. The other criterion
is based on the degree of connection of the neighbors (i.e., the neighbor with
the highest degree would be selected first in order to forward the query to).

5.2. The Influence of Structural Properties and the Reward Payoff

In this section, we analyze the influence of the structural properties of the
network and the reward payoff α in the search process. We consider values
for α in the range [4.99975, 5.0005] in order to see the effects on the search
process (see Figure 3). In this interval, we observe the effects of considering
values for α that are lower than the cost of the forwarding action (c=5),
values that are equal to the cost of the forwarding action, and values that are
greater than the cost of the forwarding action. With values of α lower than or
equal to c, the success rate was around 20%. This percentage represents the
number of tasks that can be solved directly by the first agent that receives
the task. Values of α that are strictly superior to the cost of the forwarding
action (α > c) provide an increase in the success rate of the search process
(see Figure 3 left). The structural properties of the network considered in
the search process have an important influence on the success rate. It can
be that there are significant differences between the results in scale-free,
random, and small-world networks. Scale-free provided better results than
the other networks since its structural properties increased the number of
agents that could be reachable. The diameter of the network is closer to τ
than the diameters of other network models (see Table 1). Another example
of the influence of structural properties is the average degree of connection
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of the agents. As the average degree of connection increases, the number of
reachable agents increases and so does the probability of finding the required
agent. Therefore, agents estimate that it is profitable to forward the task to
their neighbors (see Figure 3 right).

If we compare the results using a random criterion to select the next
neighbor to forward the query to with the results using a degree of connection
criterion, it can be observed in Figure 3 (bottom) that there are no major
differences in the percentage of success achieved. There is little difference
in the percentage of success in the α values that are close to the cost of the
action. In such cases, the increase of the success is a bit faster than in the
case based on the degree of connection strategy.

The structural properties and the reward value α also influence the aver-
age utility obtained by an agent. In this experiment, we analyzed values of
α in the range [0, 60]. We considered a wider range in order to see the values
that made the average agent utility positive and how this utility evolves (see
Figure 4). Values of α lower than or equal to c provided a utility equal to 0
since agents estimated that the expected reward was not enough to compen-
sate the cost of the forwarding action. Values of α that were in the interval
(5, 10] made some agents estimate that the forwarding action was going to
be profitable. Although the value for α was enough for agents to consider
forwarding tasks, their utility was not always positive for all of the agents.
Therefore, the average utility had a negative value. The interval (5, 10] for
α values could be considered risky. The average utility became positive with
α values greater than 10 (see Figure 4 left). In this experiment, the network
structure also had a significant influence. The scale-free network provided
higher values of utility than the random or small-world networks. This differ-
ence was also observed when we increased the average degree of connection
of agents (see Figure 4 right).

If we compare the results using a random criterion to select the next
neighbor that forwards the query to with the results using a degree of con-
nection criterion, it can be observed in Figure 4 (bottom) that there are
differences in the average profit per agent achieved. The random criterion
obtained better results than the degree-based criterion.

6. Conclusions

In this paper, we have analyzed the distributed search of resources in net-
works that model societies of agents. These agents offer services and interact

21



 0

 10

 20

 30

 40

 50

 60

4.9998

4.9999

5.0000

5.0001

5.0002

5.0003

5.0004

5.0005

%
 o

f 
su

cc
e
ss

fu
l 
se

a
rc

h
e
s

reward

Random
Scale-Free

Small-World
 0

 10

 20

 30

 40

 50

 60

4.9998

4.9999

5.0000

5.0001

5.0002

5.0003

5.0004

5.0005
%

 o
f 

su
cc

e
ss

fu
l 
se

a
rc

h
e
s

reward

Random
Scale-Free

Small-World

Figure 3: Influence of α values on the percentage of successful searches in different network
structures of 100 agents using different criteria for choosing the next node to forward the
query to. Top left: setwork structures with an average degree of connection of 4 and
random neighbor selection. Top right: network structures with an average degree of
connection of 6 and random neighbor selection. Bottom left: network structures with
an average degree of connection of 4 and degree-based neighbor selection. Bottom right:
network structures with an average degree of connection of 4 and degree-based neighbor
selection.
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Figure 4: Influence of α values on the utility in different network structures of 100 agents.
Top left: network structures with an average degree of connection of 4 and random neigh-
bor selection. Top right: network structures with an average degree of connection of 6
and random neighbor selection. Bottom left: network structures with an average degree
of connection of 4 and degree-based neighbor selection. Bottom right: network structures
with an average degree of connection of 6 and degree-based neighbor selection.
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with each other by providing and consuming these services. The actions of
these agents have an associated cost and not all of the agents have homoge-
neous behavior. In order to model this type of scenario, we have proposed the
use of Game Theory to formally model the interactions between the agents
as a repeated game. We have described a strategy for the search process that
is based on the random-walk strategy, which facilitates the applicability of
the model to a wider range of systems since it is domain independent. We
have also established the conditions under which the random-walk strategy is
a Nash Equilibrium. The strategy proposed has been extended by adding a
constraint for contexts where the number of times a task can be forwarded is
restricted. The conditions under which this extended strategy is a Nash Equi-
librium have also been analyzed. Finally, we evaluated the proposed model
and the latest strategy in different types of networks, and we compared the
results obtained with the results using a degree-based search strategy. The
results show that in order to promote cooperation among the agents of the
network, the expected reward should be greater than the cost of the forward-
ing action. Moreover, the network structure has an important influence on
the success of the search process and on the average utility of the system.
scale-free structural parameters facilitate the success of the search process
because their structural properties increase the number of agents that can
be reached. The experiments also show that even though there are certain
values of the reward that are enough to promote cooperation, these values
are not enough to obtain a positive average utility value.
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