
Combination of Self-Organization Mechanisms to
Enhance Service Discovery in Open Systems

E. del Val, M. Rebollo, V. Botti
{edelval,mrebollo,vbotti@dsic.upv.es}

Universitat Politècnica de València
València, Spain

Abstract

Decentralized systems have emerged as an alternative to centralized approaches
for dealing with dynamic requirements in new business models. These systems
should provide mechanisms that contribute to flexibility and facilitate adaptation
to changes in the environment. In this paper, we present two self-organization
mechanisms for a decentralized service discovery system in order to improve its
performance. These mechanisms are based on local actions of agents that only
consider local information about queries they forward during the discovery pro-
cess. The self-organization actions are chosen by each agent individually when
the agent considers them to be appropriate. The actions are: remaining in the
system, leaving the system, cloning, and changing structural relations with other
agents. We have evaluated each self-organization mechanism separately but also
the combination of the two as the environmental conditions in the service demand
change. The results show that the proposed self-organization mechanisms consid-
erably improve the performance of the service discovery system.

Keywords: Self-organization, adaptation, service discovery

1. Introduction

Nowadays, there is a trend towards large-scale, complex, and highly-dynamic
systems in order to deal with new business models and requirements. Peer-to-peer
technologies (P2P) [37], Service-Oriented Computing (SOC) [33], or Cloud Com-
puting [7] are considered to be suitable technologies to support these new models
where there is a high number of entities offering services that change frequently

Preprint submitted to Nuclear Physics B August 8, 2014

and look for other entities to collaborate with in order to obtain a resource or to
deal with a complex goal.

To facilitate collaboration between entities, systems should provide mecha-
nisms to manage information about which entities or resources are available in the
system at a certain moment as well as how to locate them in an efficient way. How-
ever, this is not an easy task in open and dynamic environments where there are
frequent changes in the available resources and global information is not always
available. Under these circumstances, the management and location of available
resources become more difficult. The field of Complex Networks has emerged
as an alternative to be able to deal with decentralized service management in a
flexible and adaptive way [5]. Some of the models proposed in this area provide
structures that allow the location of resources in a few steps taking only local in-
formation into account. One of the properties present in some of these structures
is homophily [44, 39, 23]. The idea behind this social concept is that individuals
tend to interact and establish links with similar individuals along a set of social
dimensions. Therefore, in a structure that is based on homophily, an individual
has a higher probability of being connected to a more similar individual than to a
dissimilar one. This criterion creates structures that facilitate the location task and
could be considered to be a self-organizing principle for generating searchable
structures.

Service discovery systems are deployed in dynamic environments where their
components, features, and tasks do not remain constant. These systems are ex-
pected to perform well under many circumstances (i.e., when the number of avail-
able agents changes, or when the service demand varies with time). Moreover,
since there is not a global view of the system in large, open, and distributed sys-
tems, this adaptation should be performed in a decentralized way without the su-
pervision of any centralized authority and considering only local knowledge. This
ensures that the system is robust under failures.

In this paper, we present a decentralized service management system for service-
oriented environments. Specifically, we propose the use of Multi-Agent Systems
and Service-Oriented Computing as appropriate paradigms for building these sys-
tems [14]. Agents in the proposed system offer their functionality through ser-
vices and have a collaborative behavior that facilitates the decentralized location
of services using only local knowledge. Agents are located in a network where
structural relations between agents are based on the self-organizing concept of ho-
mophily. The structural relations determine the interactions between the agents,
their local knowledge, and, therefore, the performance of the service discovery
process. The number of agents and the structural relations between agents do

2

no remain static in open systems. In this way, we present two self-organization
mechanisms that are included in the service discovery process in order to facilitate
system adaptation when changes in service demand occur. One mechanism fo-
cuses on how the relations between agents could be rearranged to improve system
performance. The other mechanism considers the adaptation of the agent popula-
tion according to the service demand. The main advantages of this proposal are
that the self-organization of the system is a continuous process that is carried out
by each individual agent without central supervision; each agent is able to reason
about when it is most appropriate to make a self-organization decision; agents
only require local information about the service demand and the utility of their
links; and, system dynamics about structural relations and population are taken
into account.

The rest of the paper is structured as follows: in section 2, we present an
overview of works that includes distributed search and self-organization strate-
gies in distributed environments. In section 3, an example of a service discovery
scenario is presented. In section 4, we describe the formalization of our proposal
for the self-organization of the decentralized discovery system. In section 5, the
self-organization actions that agents can execute during the service discovery are
described. In section 6, we present a set of experiments to validate the proposed
model and the self-organization mechanisms in different scenarios. Finally, in
section 7, conclusions and final remarks are presented.

2. Related Work

Large-scale, open, and highly-dynamic systems are populated by entities that
have to deal with complex tasks and need services provided by other entities in
order to fulfill their goals. Therefore, these systems should provide mechanisms
to manage the information about the available services in the system and to de-
termine which entities provide them. Moreover, in order to deal with changes in
the requirements or in the environment conditions, these systems should provide
self-organization functionalities. Self-organization is considered to be the mech-
anism or the process that enables a system to arrange its organization at run-time,
without explicit external commands [13]. Starting from entities that are structured
in a sub-optimal organization or that are not organized at all, a self-organizing
system is able to form a specific organization to pursue a well-defined goal [24].
The main issue in self-organization is to determine the best mechanism for reor-
ganizing the current structure through the execution of local actions in order to
achieve the desirable behavior despite a high degree of uncertainty in the system.

3

Self-organization mechanisms attempt to deal with this task. The inclusion of
these mechanisms in distributed systems provides desirable system features such
as openness, robustness, flexibility, or scalability [45]. However, the main goal
is the improvement of the system utility in dynamic environments. In order to
facilitate the integration of self-organization mechanisms, it is desirable for the
systems to have three main features: (i) no external control, central authority, or
supervisor should guide the adaptation process. The adaptation process should be
carried out locally, based on the local interactions of each entity; (ii) the system
should be able to evolve; (iii) the entities of the system should be able to deal with
uncertainty in order to make decisions. In this context, researchers have proposed
mechanisms that deal with distributed service discovery and self-organization in
several ways.

In distributed approaches, the responsibility of resource management relies
on a set of specific entities to provide scalability and robustness. In P2P sys-
tems, structures based on super-peers [36] and Distributed Hash Tables (DHT)
[40, 30] have been proposed. Super-peer approaches have problems when several
super-peers fail and other peers that are less qualified must replace them. DHT ap-
proaches are able to locate resources in O(log n). Nevertheless, the maintenance
of the indexes when peers join and leave the system affects the performance of the
system. Updates imply the interchange of messages among peers; therefore, the
system could be in an inconsistent state during a period of time due to outdated
references. Furthermore, these mechanisms are not very effective in locating re-
sources with partial information. The accuracy of the search is reduced since
the search is based on numeric keys and does not consider semantic information,
which allows more flexible and accurate search processes. There are some ap-
proaches based on super-peers that deal with this problem introducing semantic
information. In these systems, peers with similar content connect to the same
super-peer and sophisticated routing strategies based on the metadata schema, at-
tributes and ontologies are used [31].

There are other works based on structures where all the entities are considered
to be equal and there is an arbitrary topology. These structures provide more flex-
ibility and adaptability. Entities only have a partial view of the system structure or
service organization and need the collaboration of the rest of the system in order
to succeed in the search process. The search approaches in systems use blind or
informed algorithms for locating resources.

Blind algorithms do not consider any information about resource locations
and use flooding or random strategies. In flooding strategies, if the entity that
receives the query about a resource does not have it, the entity forwards the query

4

to all its neighbors [47]. In general, flooding algorithms overload the system with
the traffic generated during the search process. However, there are approaches
that try to improve the efficiency of flooding strategies using self-organization
mechanisms. Cooper et al. [8] present a work where peers are initially randomly
connected and when their links are overloaded, agents can disconnect them. The
peers that are disconnected will then reconnect to other peers. Random walks
have been presented as an alternative search algorithms to flooding ones [42]. A
random walk algorithm selects a set of the neighbors to forward the message.
Each message follows its own path and is called a walker. The disadvantage of
these types of algorithms is that the percentage of success varies depending on the
network topology [17], the popularity of the resource, the number of walkers, and
the Time To Live.

In order to prevent the generation of traffic, informed algorithms that consider
local information have been proposed. These algorithms consider the information
that is stored about their direct neighbors or statistics of previous searches in local
registries. An example of these algorithms is presented by Crespo et al. [9]. They
present a proposal that is based on Routing indices. These indices allow nodes to
forward queries to the neighbor that is most likely to have answers. Each node
has a routing index (RI) with information about the number of documents along
the path and the number of documents on each topic of interest. If a node cannot
answer the query, it forwards the query to a subset of its neighbors based on its lo-
cal RI rather than randomly selecting or flooding the network. The problem with
this proposal is keeping the large amount of information updated. The number of
messages required to propagate changes in the system could overload the system.
If the update process is delayed, a node can have information about routes that
are not valid. Moreover, the precision of the method depends on the number of
categories that are considered in the search process. Tempich et al. [41] present
an approach that also uses techniques of routing indices. Peers observe which
queries are successfully solved by other peers and remember these peers in future
query routing decisions. To improve the precision in the search results, semantic
descriptions are used for the data sources. There are other approaches that use al-
gorithms for information sharing that are based on the relationship between pieces
of information to enable efficient information sharing [46]. The pieces of informa-
tion are obtained from previous sent messages between agents. Therefore, when
an agent has a piece of information, based on previous messages, it can choose
which of its neighbors is most likely to need the information or know who has it.
The main drawback is how to calculate the relationship between pieces of infor-
mation since it is highly domain dependent. Yu and Singh [49] propose the use of

5

a referral system in order to guide the search process. Each agent in the system
maintains a list of neighbors and their expertise. Thus, when looking for a piece
of information, an agent sends the query to a number of its neighbors who try to
answer the query. If they cannot, they send back referrals pointing to other agents
that based on their expertise may have the desired information.The algorithm uses
the similarity between a query vector and a neighbor expertise vector, as well as
its historical referring performance, as the criteria for selecting the next agent in
the search process. The use of routing indices-like approaches allows agents to
answer queries in an efficient way as information about the interests and abili-
ties of others is collected, without modifying the topology or imposing an overlay
structure to the network [43], as long as the number of agents does not increase to
very large numbers.

Other approaches use biologically inspired techniques to locate and organize
resources [27, 16]. Computer science is interested in understanding how nature
is able to self-organize by considering only local information [29, 38]. There are
some approaches based on Ant Colony Optimization algorithms (ACOs). These
algorithms are inspired on the behavior of ants and, specifically, on a principle
called stigmergy. Stigmergy is an indirect mechanism of communication that is
based on the information that entities leave in the environment. This information
is taken into account by other agents in order to make decisions. An example
of this mechanism for self-organization is presented by Caro et al. [12]. They
propose a hybrid protocol for packet routing and for improving the efficiency of
the paths.

There are other approaches where the underlying topology of the system is
loosely structured using certain criteria. This fact facilitates the search process.
For instance, Semantics has been included in the systems as a criterion to estab-
lish links, to guide the search process or to improve the accuracy of the results.
An example of this is presented in [18]. The authors present an overlay structure
and routing criterion based on semantic similarity between peers. For selecting
the expert peers, semantic topology analysis is exploited. However, the semantic
topology is fixed and it is not adapted any further during the lifetime of the ex-
periments. There are other approaches such as INGA [28], where metaphors from
on-line social networks as well as semantic similarity between queries and meta
data of annotated documents are used in order to improve the search performance.
Zhang et al. [50] introduce a topology reorganization that group peers with sim-
ilar data elements. They consider a hierarchical structure that groups agents into
levels, and again by groups, based on content similarity. Their search algorithms
improve basic flooding approaches by assuming a cooperative system. However,

6

hierarchical topologies are less flexible in dynamic environments and can create
bottlenecks when the number of queries increases.

Reinforcement Learning has been used in the context of information sharing
and to dynamically self-organize the structure of the systems. In the proposal
presented by Zhang et al. [51], the authors describe a reinforcement learning ap-
proach for improving the performance of distributed IR search algorithms. Agents
maintain an estimated utility by learning from the feedback information returned
from previous search sessions. They authors apply the reinforcement learning ap-
proach in a hierarchical overlay network based on the content similarity measure
among the documents of the agents. In the approaches that make use of rein-
forcement learning techniques in self-organization, agents adapt their behavior
by calculating a probability that is based on information related to their current
state, previous decisions, and environment conditions. Abdallah et al. [1] present
a self-organization mechanism. When an agent receives a message, it updates
its current state using a reinforcement algorithm and decides if it is appropriate
to stochastically reorganize its current links by adding or removing neighbors.
The reinforcement learning algorithm used in the decision-making process to up-
date the behavior of agents is called Weighted Policy Learner (WPL). This gra-
dient algorithm allows agents to learn stochastic policies that make agents slow
down learning when moving away from a stable policy and speed up learning
when moving towards a stable policy. This approach improves previous propos-
als based on reinforcement learning [34] since it considers the dynamism of the
network. Nevertheless, the decision-making algorithm considers the reorganiza-
tion of agents links based on a predefined probability. Moreover, the decision of
removing neighbors is also conditioned by a constant that is dependent on the av-
erage degree of connection of the network structure. There are other approaches
that combine trust and Q-learning algorithms to self-organize the system struc-
ture. Trust has been used to consider agents opinion in order to select candidates
to adapt their relations. Q-learning algorithm is used to evaluate the rewards about
adapting structural relations [48].

There are other approaches that focus on how systems can be rearranged in
order to improve their performance as the environmental conditions and the or-
ganizational goals change. For instance, Kota et al. [25] present a reorganiza-
tion mechanism that takes into account different organizational relations between
agents that regulate agents interactions. Agents change their relations in order to
distribute their workload to subordinates. The change of relations is based on a
utility function that considers the reorganization cost, the load of the agent, and
the communication cost. The proposed organization model makes some assump-

7

tions that reduce its application in open environments. In the model, all the agents
are acquainted with each other, and an agent has information about its own ser-
vices, the services provided by its peers, and the accumulated service sets of its
subordinates. Therefore, agents rely on a global view of the system for making
adaptation decisions.

Kamboj et al. [22] present an approach that is based on Organizational Self-
Design (OSD) in order to come up with a suitable organizational structure at run-
time. The proposed approach is based on two operators (spawning and composi-
tion) and a task environment. The reorganization mechanism relies on tasks that
are hierarchically organized with regard to the roles of the agents. The decision
to reorganize is based on the load of the agent and the last organizational change.
If the agent decides to change the organizational structure, it has two possible
actions: spawning, which creates new agents to delegate part of its tasks to; or
composition with another agent if the agent has been idle for an extended period
of time. The main drawback is that this approach relies on a predefined hierarchi-
cal structure of tasks that establishes a set of structural adaptation actions.

Gaston et al. [15] present a framework for Agent-Organized Networks (AONs)
that incorporates adaptation techniques that improve system performance. They
propose a bottom-up approach that focuses on the links between agents. The goal
of the agents is to maximize their utility, and they are completely selfish. The
framework determines when to adapt (if the expected change in utility is over a
certain threshold) and which connections to rewire (depending on the number of
trades made using this connection). However, the new neighbor that replaces the
useless one is selected taking into account broader knowledge that goes beyond
its local knowledge about agent’s direct neighbors.

In this article, we present a service discovery system with self-organization
mechanisms that attempts to improve previous approaches in several ways. First,
it completely relies on the local information of agents about the attributes of their
direct neighbors and the information generated as the result of interactions during
the service discovery process. Agents do not rely on a hierarchical organiza-
tion in order to make decisions about the search process or the self-organization.
Therefore, the system provides robustness, scalability, and facilitates the self-
organization. Second, our model focuses not only on the analysis of structural
relations between agents but also on the analysis of the population of the system.
Third, agents are able to reason about when it is most appropriate to consider a lo-
cal self-organization action. Agents determine: (i) whether or not their position in
the system is beneficial; (ii) whether or not it is worthwhile to change their struc-
tural relations with neighbors; (iii) and which acquaintances are the most suitable

8

for establishing a profitable relation with (i.e., the set of potential neighbors is not
random, it is established taking the activity of the system into account). Fourth,
the system integrates semantic information as well as information from previous
searches in the self-organization process. Finally, experiments that evaluate our
approach and compare it with other existing proposals are presented.

3. Service Discovery Scenario

Currently, there are more and more web services available that allow cus-
tomers to deal with their daily activities: communications (mail, news, social),
search (multimedia, item), entertainment (travel, sports, weather), or work tasks
on-line [7]. As the number of services increases, there is a need to facilitate loca-
tion and coordination among them [32]. Moreover, the available services change
dynamically, and customers usually do not have a global view of the functionality
of the whole system. Thus, mechanisms that facilitate the location of these ser-
vices in a decentralized way are required. Furthermore, web activity evolves over
time, for example according to the time of the day, the different days of the week,
or different seasons of the year [19, 3]. For this reason, the system should be
able to adapt itself without external coordination according to customer demand
in each moment.

To illustrate the context where the self-organization mechanisms are applied,
let us present a service discovery scenario where the discovery process is de-
scribed as well as the situations where self-organization mechanisms are applied.
Consider a network of services as a form of autonomic cloud computing sys-
tem. This network contains different groups of semantic web services provided
by software agents as part of an overlaying network. In some situations, these
agents should interact with each other to achieve a task that they cannot afford
individually since they are not specialized in that area or because the task is too
complex to be carried out by a single agent. Moreover, we assume that the ser-
vice demand changes at different times of day. Therefore, agents should be able
to evaluate their importance in the system and adapt their structural relations with
other agents to deal with changes in environment conditions trying to optimize the
overall performance of the system.

The scenario in Figure 1 shows a network of a few agents that play organi-
zational roles and offer semantic web services. The structural relations between
these agents have been established taking a probabilistic criterion based on choice
homophily into account [11]. Choice homophily determines the similarity of two
agents considering their attributes (i.e., the role an agent plays and the services

9

and agent offers). Therefore, agents have more connections with agents that play
similar roles and offer similar services than with dissimilar ones. In the case of
agent i, it has connections with agents k and j, which play similar roles and offer
similar services, and agent n, which plays a dissimilar role and offers a dissimilar
service. Note that agents that play similar roles are represented in Figure 1 with
similar colors. Agent i offers the service s1; however, in order to achieve one of its
goals, it needs to locate an agent that offers a service similar to s6 and plays a role
similar to r5. At that moment, agent i creates a query q = {s6, r5} that consists
of the required semantic service description and the organizational role that the
target agent should play. The query has a Time To Live (TTL) associated, which
is the maximum number of times that it can be forwarded. If the query exceeds the
TTL, it is considered to be a failure of the service discovery process. Otherwise,
the query is forwarded to one of the neighbors. It is assumed that all the agents
are collaborative and follow the same criterion to forward the queries.

In the scenario shown in Figure 1a , agent i should choose one of its neigh-
bors, n,j, or k, to forward the query q. In order to select the most promising
neighbor, the agent i applies a function that considers: (i) the choice homophily
between the neighbors of agent i and a fictitious agent t that offers the service
and plays the role specified in the query q; and (ii) the degree of connection of
the neighbors. Assuming the values of choice homophily that appear in Figure
1 (CH(k, t) = CH(j, t) = 0.5, and CH(n, t) = 0.15) and their degrees of con-
nection, agent i sends the query to the most promising agent (i.e., agent k). This
process is repeated until the similarity between a local service of an agent and the
service in the query is over a certain threshold or the query exceeds the TTL. In
the described scenario, the process ends when the query arrives to agent v (see
Figure 1a). Afterwards, agent i stores agent v in its local view as a possible can-
didate for establishing a future structural relation if some of its current relations
are not useful.

We assume that, as time passes, service demand changes and the services of-
fered by agents that play the role r5 start to be the most demanded services in
the system. As a result, agent i analyzes its internal state sti and realizes that its
structural relation with neighbor n has become useless. Therefore, agent i decides
to break its current structural relation with n and establish a new one with a candi-
date that was discovered as a result of a previous search process ((i, n) → (i, v))
(see Figure 1b). This self-organizative action reduces the distance towards the
agents that provide the most demanded services and improves the success rate in
future discovery processes.

Also, there are other agents (such as agent m) that, through an analysis of

10

i
Ri = {r1}
Si = {s1}

k
CH(k, t) = 0.5

j
CH(j, t) = 0.5

n
CH(n, t) = 0.15

A S R |N |
k Sk Rk = {r1} 5
n Sn Rn = {r2} 5
j Sj Rj = {r1} 4

v
Rt = {r5}
St = {s6}

m
Rm = {r7}
Sm = {s7}

(a) .

i
Ri = {r1}
Si = {s1}

k
Rk = {r1}

Sk

j
Rj = {r1}

Sj

A S R |N |
k Sk Rk = {r1} 5
j Sj Rj = {r1} 4
v Sv Rv = {r5} 4

v
Rt = {r5}
St = {s6}

m
Rm = {r7}
Sm = {s7}

v�

Rt� = {r5}
St� = {s6�}

(b) .

Figure 1: An example of a decentralized service discovery system.

the information in their internal state, realize that they are offering services that
are not being demanded in the system. In this case, these agents might decide
to leave the system. For instance, in Figure 1, agent m leaves the system. Other-
wise, if the demand for services offered by agents that play certain roles increases,
agents might decide to create a clone to satisfy the current service demand. In our
scenario, assuming that the demand for services offered by agents with role r5

increases considerably, agent v creates a clone, v′, to satisfy the current service
demand.

In our model we include two adaptation mechanisms that allow agents to rea-
son about different organization actions based on their local view. These organi-
zation actions allow the adaptation of the structural links between agents and the
system population when service demand changes.

4. Formal Model

Our self-organization model allows agents to reason about actions that they
can carry out in order to improve the service discovery activity in the system.
Specifically, this model allows agents to analyze their local information and, based
on this information, to determine whether it is appropriate to replace their useless

11

structural relations with profitable ones or to leave, continue, or clone themselves
in order to adapt the system population to the service demand. In this section, we
introduce the notation of the main components that are part of the decentralized
service discovery system.

The model presented in this work is based on a set of autonomous agents that
play at least one organizational role and offer their functionality through a set of
semantic services. These agents have a reduced view of the global community:
just a limited number of direct neighbors are known and the rest of the network
remains invisible to them.

DEFINITION 1. (System). The system is defined as a Service-Oriented Multi-
Agent System SOMAS = (A,L), where A = {i, ..., n} is a finite set of au-
tonomous agents that are part of the system, and L ⊆ A × A is the set of links,
where each link (i, j) ∈ L indicates the existence of a direct relationship between
agent i and agent j based on the homophily criterion.

It is assumed that the knowledge relationship between agents is symmetric, so the
network is an undirected graph.

An agent is a social entity that interacts with other agents in the system. It
controls its own information about (i) the semantic services it offers, (ii) the orga-
nizational roles it plays, and (iii) local knowledge about its immediate neighbors.
The agent is unaware of the rest of the agents in the system.

DEFINITION 2. (Agent). An agent i ∈ A is characterized by a tuple of four ele-
ments (Ri, Si, Ni, sti) where:

• Ri = {r1, . . . rm} is the set of roles played by the agent;

• Si = {si, . . . , sn} is the set of services provided by the agent. Each service
should be associated to at least one of the roles played by the agent, si ∈⋃
∀ri∈Ri

Sri .

• Ni is the set of neighbors of the agent, Ni = {m, ..., p} : ∀j ∈ Ni,∃(i, j) ∈
L, and |Ni| > 0. It is assumed that |Ni| � |A|;

• sti is the internal state of the agent;

12

Next, we are going to describe with more detail two of the attributes that are
part of an agent in our system: the role and the internal state.

Agents located in our system play at least one organizational role. The orga-
nizational role of an agent determines the type of services that it can offer.

DEFINITION 3. (Role). A role ri ∈ Ri is defined by the tuple (φi, Si) , where:

• φi is a semantic concept for the role;

• Sri = {s1, . . . , sl} is the set of services associated to the role. Each service
is defined by the tuple si = (Ii, Oi, Pi, Ei), where the components are the
set of inputs (Ii), outputs (Oi), preconditions (Pi), and effects (Ei) of the
services, respectively. All of them are semantic concepts that can be defined
in different ontologies.

Each agent in the system maintains a local view of what is happening. This
local view is stored in its internal state, sti, which is built using the information
collected from previous interactions with other agents. The sti allows an agent to
make decisions based on its local data without the need for communicating with
other agents, which requires coordination with higher level entities that supervise
what is happening in the system and introduces scalability problems [4].

DEFINITION 4. (Internal State). The internal state of an agent in our system sti
is characterized by a tuple of (KNi ∪ KAi ,KEi ,Ksti) where:

• KNi ∪ KAi is the partial knowledge about the neighborhood of agent i;

• KEi is the model of the local environment;

• Ksti is the status of the agent.

The (KNi ∪ KAi) represents the partial knowledge about its neighborhood. An
agent only has knowledge about a limited number of agents and only has a partial
view of them. Specifically, an agent has knowledge about the following:

• a set of direct neighbors KNi =< {Rj, |Nj|, Qij}∀j ∈ Ni >. Agent i
contains information about each neighbor j: the roles j plays, the services
j offers, the degree of connection of j, and the number of times that a query
that arrived to the agent i was not forwarded through its neighbor j;

13

• a set of acquaintances KAi whose existence agent i is at least aware as a
result of the discovery process.

The neighborhood of an agent does not remain constant. The update process
of neighbors is carried out by the agents in a proactive way as a consequence
of the service discovery activity in the system: new agents are discovered; other
agents decide to leave since they are not receiving enough requests related to their
services; or existing links are reinforced or replaced depending on whether or not
they are being used in the forwarding process.

The KEi is the model of the local environment. This model includes informa-
tion that estimates aspects of the environment that are relevant to the agent in order
to improve the agent’s position in the system. In the case of our service discovery
scenario, an agent maintains the following information KEi =< qi, Qi, ρi, > (see
Figure 2a), where:

• qi = [qr1i , q
r2
i , ...,] is the local service demand distribution (i.e., the number

of queries that the agent receives about services that are being demanded in
the system);

• Qi is the number of total queries that the agent receives;

• ρi is the correlation coefficient that establishes the relationship between the
local service demand distribution qi and an estimation of the expected ser-
vice demand distribution.Power-law, Exponential, and Zipf’s-law distribu-
tions are present in many features of Internet [2, 20]. In our system, the
exponential distribution has been considered as the function that models the
service demand in the system, where there are always a few services that
are the most demanded and the rest of the services have a lower demand
rate. Specifically, we assume that the expected service demand distribution
is eDistr(x) = a · ex·b, where the x parameter represents a role identi-
fier. We estimate the a and b parameters of this distribution using the least
squares method and the data from qi. The correlation parameter ρi ranges
in the interval [-1,1], where 1 indicates a perfect positive fit and -1 indicates
a perfect negative fit. If there is no linear correlation, ρi is close to 0.

The information contained in the model of the local environment is important
for determining what the most demanded services are. Moreover, this information
is continuously updated by the continuous interactions among agents and helps
agents to learn about remote parts of the system.

14

The Ksti is the status of the agent. The status depends on the significance of
the information an agent has. If an agent has an accurate view of the system, it
is considered to be in a stable state. When a new agent arrives to the system, or
when it has outdated information that introduces noise in its local environment,
the agent is considered to be in a transition state. It is important to determine
the state of an agent in order to make decisions related to the adaptation process.
Agents in the system can be in one of two adaptation status: transition and stable.
An agent is in a transition state when its local view of the service demand in
the system (KEi) does not follow the expected service distribution (eDist). All
the agents are initially in a transition status since agents do not have information
about the service demand distribution in the system. An agent is in a stable status
when its local view of the service demand follows the expected service demand
distribution.

Besides the attributes that an agent in our system has, it also has a set of
functions to deal with the dynamics of the system: FN and FA. The first function
FN : A → Ni is used in the decentralized discovery process. This function
calculates the most promising neighbor j of an agent i to forward a query q =
{sq, rq}. The query contains the description of the service, sq, and role desired ,
rq, towards an initially unknown target agent that solves it:

FN(t) = argmax
j∈Ni

1−

1−

 CH(j, t)∑
n∈Ni

CH(n, t)

|Nj |

 (1)

The parameter t is a fictitious agent t = (rq, sq, ∅, ∅) that represents the unknown
provider agent that is able to provide a service similar to the service that appears in
the query and also a role similar to the role that appears in the query. This formula
is based on the choice homophily (CH) [11] between neighbor j ∈ Ni and agent
t, which estimates how close is agent j to the unknown provider agent t. The
divisor of the expression is just a normalization factor. The degree of connection
of a neighbor j is also considered in the formula (|Nj|). The consideration of the
degree is also important in the discovery process since highly connected agents
have more neighbors and, therefore, they have more probabilities to interconnect
different communities. If there are two neighbors that have the same degree of
similarity, the function selects the neighbor with highest degree of connection.

The second function FA : sti → Ψ is used to decide local self-organization
actions based on the internal state of the agent, where Ψ = {clone, remain, leave,

15

rewire} is the set of possible actions.
Once we have defined the components of the system, we describe briefly how

the relations between agents are established. Note that our focus is not on de-
scribing how the system structure is created. Rather, it is on self-organization
mechanisms to improve the service discovery performance. However, in order to
facilitate the understanding of how the structure of the system is created and how
the service discovery process works, we introduce a brief description of how rela-
tions between agents are established. For a detailed mathematical treatment about
this process, we refer the reader to [11].

Agents establish structural relations with other agents based on choice ho-
mophily (CH) as a self-organization criterion [26]. The choice homophily con-
cept, translated to the agent context, has been considered as the similarity measure
based on the service description and organizational role. Agents have more prob-
ability to establish links with similar agents (i.e., the degree of choice homophily
between two agents is over a threshold (CH(i, j) > ε)) than with dissimilar ones.
When a new agent, i, arrives to the system, it establishes at least one structural
relation with another agent, j, that is already present in the system. Each agent
that is part of the system is considered an entry point. If an external agent i wants
to get into the system, it follows the following steps:

• Initially, agent i should know at least one agent j in the system. Agent i
sends a request to agent j to be part of the system.

• If j sends i a refuse message the interaction finishes. Otherwise, j allows
i to get into the system and it sends i an agree message. This means that
j, based on the choice homophily between them, is going to consider the
establishment of a link with i.

• If agent j decides to establish a link with i, it sends an inform message to i
with the link information (〈i, j〉). Otherwise, j forwards the request to one
of its neighbors k randomly selected. The process is repeated until agent
i receives an inform message with its neighbor (〈i, k〉) and establishes a
connection with it. The number of connections that an agent establishes is
predefined by the system. Note that the link establishment process uses a
random walk strategy and a probability based on homophily to find neigh-
bors. The reason to use this random strategy, instead of a strategy based
only on homophily criterion, is to give new agents the chance of establish-
ing links not only with similar agents, but also with dissimilar ones. Links

16

between dissimilar agents allow agents to locate other agents communities
in a few steps.

ρi = 0.896
eDistr(x) = 1.07 · e(−x·1.12)

qi

r

q
i
[r

]

KE
i ,Kst

i = stable

 0

 0.2

 0.4

 0.6

 0.8

 1

13 15 14 11 9 12 10 8 7 6 5 4 3 2 1 0

(d) sti after the adaptation to new service
demand. The agent fixes the distribution of roles.
ρi is near 1 and Kst

i is stable.

ri ∈ Ri

ρi = 0.865
eDistr(x) = 1.73 · e(−x·1.16)

qi

KE
i ,Kst

i = stable

SHi

q
i
[r

]

r

 0

 0.2

 0.4

 0.6

 0.8

 1

0 1 3 2 4 5 8 7 15 14 13 12 11 10 9 6

(a) Initial sti adapted to the current service
demand. The agent fixes the distribution of roles.
ρi is near 1 and Kst

i is stable.

ρi = 0.59
eDistr(x) = 0.47 · e(−x·0.35)

qi

q
i
[r

]

r

KE
i ,Kst

i = transition

 0

 0.2

 0.4

 0.6

 0.8

 1

0 1 3 2 4 5 8 7 15 14 13 12 11 10 9 6

(b) sti when service demand changes. Services
offered by agents that play roles r15, r14, r13, and
r11 start to be demanded. ρi decreases and Kst

i is
transition.

ρi = 0.54
eDistr(x) = 1.07 · e(−x·1.12)

qi

r

q
i
[r

]

KE
i ,Kst

i = transition

 0

 0.2

 0.4

 0.6

 0.8

 1

15 14 13 11 12 10 9 8 7 6 5 4 3 2 1 0

(c) sti during the adaptation to new
service demand. The agent reorder the
distribution of roles. ρi is not close to
1 and Kst

i is transition.

Figure 2: Example of the internal state sti of the agent i. Each plot shows the local view of the
service demand distribution qi in a certain moment. The x-axis shows the numeric identifiers for
the roles (r0, r1, ...) that appear in the queries that agent i receives. The y-axis shows the number
of queries forwarded of each role qi[r]. The number of queries is normalized. The line shows an
estimation of the expected distribution of service demand taking into account the data collected by
the agent.

5. Self-Organization for Service Discovery

Agents reason about local properties of the system by combining their partial
view of the neighborhood, their model of the local environment, and their internal

17

status. As a result of this reasoning process, agents make local decisions that are
translated into actions, FAi : sti → Ψ. These actions affect the internal state
of the agents, sti, which should be updated. The environment is also affected
by the local actions carried out by the agents, since the structural relations and the
population are adapted to changes in service demand. These local actions improve
the global performance of the system.

Algorithm 1 shows an overview of the reasoning process followed by the
agents during the discovery process, where self-organization mechanisms are con-
sidered. This process is initiated when agent i generates a query q = (sq, rq),
which contains the semantic description of the desired service and the role that
the target agent should play. A fictitious agent t is created with the service and
role specified in the query q (Line 3). Agent i looks for a neighbor similar to t.
If it finds a suitable neighbor, the service discovery process ends (Lines 5-10).
Otherwise, the agent i forwards q to one of its neighbors j ∈ Ni. Specifically,
q is forwarded to the agent that has semantic closeness (degree of choice ho-
mophily) to the fictitious agent t and also has a high degree of connection (see
Equation 1)(Line 12). Then, agent i updates its information about which of its
links have been used (Line 13). Agent i also updates the number of total queries
it received (Qi), and the number of queries about the role rq (qi[rq]). If the query
is solved, the source agent (which started the service discovery process) adds the
provider agent that was found to its set of acquaintances if the source agent does
not already have another agent in its acquaintances that plays the same role (Lines
19-20). Finally, the source agent updates its internal state sti and analyzes the set
of self-organization actions that it can carry out.

In the following sections, we are going to describe the main functions related
to self-organization that appear in the service discovery algorithm: Internal state
analysis, Structural adaptation, and Agent adaptation.

5.1. Internal State Analysis
The internal state analysis consists of reorganizing the local information that

an agent has about the service demand and determining whether or not this in-
formation is reliable and sufficient to know what is happening in the system (see
Algorithm 2).

Initially, if the agent is in a transition state, it can reorganize the local service
demand distribution qi taking into account the number of queries received about
the services of each role (Lines 2-4). An example of this situation is shown in
Figures 2c and 2d where agent i is in a transition state and decides to reorganize
the local service demand distribution qi ({qr15 � qr14 � qr13 � qr11 � qr12 �

18

Algorithm 1 Function that describes the service discovery process where self-organization mech-
anisms are considered.
1: function SelfAdaptationServiceDiscovery(i, q = (sq , rq))
2: source← i
3: t← (rq , sq , ∅, ∅)
4: while ¬found ∧ TTL ≤ 100 do
5: for j ∈ KN

i do
6: if CH(j, t) > ε then
7: found← true
8: target← j
9: end if

10: end for
11: if ¬found then
12: n← FN (t)
13: updateLinksDecay(i, n)
14: qi[rq]← qi[rq] + 1
15: Qi ← Qi + 1
16: TTL← TTL+ 1
17: i← n
18: end if
19: if found ∧ @k ∈ KA

source : rq ∈ Rk then
20: KA

source ← KA
source ∪ target

21: end if
22: end while
23: InternalStateAnalysis(source)
24: StructuralAdaptation(source)
25: AgentAdaptation(source)
26: end function

qr10 � qr9 � qr8} to { qr13 � qr15 � qr14 � qr11 � qr9 � qr12}). If the
agent is in a stable state, the previously defined order of most demanded services
is maintained.

OnceKEi is updated, the agent updates its statusKsti (Lines 5-9). To determine
if it is in the appropriate status, the agent evaluates the linear correlation. Corre-
lation parameter ρi indicates the degree of fitness between the local data qi and
the expected exponential distribution eDistr(x) = a · ex·b. If ρi is over a certain
threshold δ, the local information accurately reflects the current traffic situation
and the agent changes its current status to stable.

The consideration of an outdated KEi could negatively influence the reasoning
process of the agent. This usually happens when frequent dynamic changes in
the service demand occur. In order to determine whether or not reset its model of
the local environment KEi and change its status Ksti to transition, the agent should
receive a sufficient number of queries. The significance of the number of received
queries is evaluated through a logistic function (Lines 10-24):

19

P (Qi) =
1

1 + ·e
−(Qi−d)

y

, (2)

where y is the slope, d is the displacement constant, and Qi is the number of
queries the agent has forwarded. The most influential constant is d. A higher
value of d means that the agent is going to consider a higher number of queries
in order to make a decision about resetting the information in KEi . The function
P (Qi) returns a value in the range [0,1], where 0 indicates that the agent has
not received a sufficient number of queries to make a decision about resetting its
current KEi and where 1 indicates that the number of queries is significant enough
to make a decision. Besides the number of queries, one of the following cases
must also be given in order to reset KEi :

• the agent is in a stable status, but its ρi is under a certain threshold (Line
12);

• the agent should be in a stable status since it has received a high number of
queries, but it is still in a transition status (Line 16).

• the agent is in a stable status, but it has never consider to clone itself (Line
20).

Any of these states mean that the local model of the agent starts to be outdated
with respect to the current system demand, and it is advisable to reset its local view
since the consideration of outdated information introduces noise in the current
data distribution and affects the self-organization process.

Once the agent has analyzed its internal state, it is able to make decisions about
changing its structural links or about remaining, cloning, or leaving the system. In
the following sections, we explain the information that an agent takes into account
in order to make each decision and the reasoning process that the agent follows.

5.2. Structural Self-Organization
Agents are able to reason about whether or not to maintain, reinforce or create

new structural relations. To facilitate the reasoning process about the structural
relations between agents, they consider a decay metric that it is associated to each
link. This metric indicates the probability of maintaining the link. It ranges in the
interval [0,1], where 0 indicates that the link is not being used and 1 indicates that
the link is being used. The function is a sigmoid:

20

Algorithm 2 Function that analyzes the internal state of the agent: reorganizes the local model of
the environment, changes the status of the agent, or resets its current information when it considers
that is required.

1: function InternalStateAnalysis(i)
2: if (Kst

i = TRANSITION) then
3: sort(KE

i)
4: end if
5: a, b← leastSquaresF itting(qi)
6: ρi ← linearCorrelation(a · e(b·x), qi)
7: if (ρi > δ) then
8: Kst

i ← STABLE
9: end if

10: pReset← 1/(1 + ·e−(Qi−d)/y)
11: if (pReset > random) then
12: if ((Kst

i = STABLE) ∧ (ρi < δ) then
13: KE

i ← resetInformation(KE
i)

14: Kst
i ← TRANSITION

15: end if
16: if (Kst

i = TRANSITION) then
17: KE

i ← resetInformation(KE
i)

18: Kst
i ← TRANSITION

19: end if
20: if ((Kst

i = STABLE) ∧ (clones = 0)) then
21: KE

i ← resetInformation(KE
i)

22: Kst
i ← TRANSITION

23: end if
24: end if
25: end function

decay(Qij) = 1− 1

1 + ·e
−(Qij−z)

y

, (3)

where y is the slope and z is the displacement constant. The constant that has
more influence on the decay function is z. In Figure 3, the effects of varying this
constant in the function can be observed. If z takes a high value, the agent is more
resilient to make changes in its current links. Qij is the number of queries that
arrived to agent i and were not forwarded through agent j. Every time that agent
i forwards a query, it updates the information about the usage of its links. If the
query is forwarded through agent j, the Qij is updated to 0. Otherwise, the Qij

is increased by increments of 1 (see Algorithm 1, Line 13). With the information
provided by the decay function, agent i reasons about the benefit of maintaining
its current links.

In Algorithm 3, we describe the reasoning process that agents follow to adapt
their current links. Each agent invokes this function when ends a service discovery
process that the agent has initiated. If the agent has at least one acquaintance

21

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

P
(Q

ij)

Qij

z=100
z=300
z=500

Figure 3: Decay function for the structural links of agents with different values for the displace-
ment parameter z.

(|KAi | > 0) in its internal state sti as a result of a previous discovery process,
then the agent analyzes its current structural links with its neighbors (Line 2). The
agent has information about its neighborhoodKNi in its sti. With this information,
the agent evaluates the probability of maintaining each of its links (Line 4). If this
probability is under a certain threshold, the agent looks for a candidate in KAi that
was known as a result of a previous service discovery process. The agent selects
the acquaintance that plays one of the most demanded roles according to its local
view of the environment KEi (Lines 6-10). In the case that a suitable candidate is
found by the agent, the agent breaks its current relation and establishes a new one
with the selected acquaintance. Finally, the agent updates its internal state (Lines
11-15).

5.3. Population Self-Organization: Leaving, Remaining, or Cloning
The analysis that evaluates whether it is worthwhile for the agent to remain in

the system, clone itself, or leave the system, takes into account the following three
parameters:

• the number of queries received by the agent Qi (see Equation 2),

• the degree of correlation ρi,

• the structural homophily of the agent SHi.

In the context of service discovery, we define the concept of structural ho-
mophily SHi as the degree of similarity between the services demanded in the

22

Algorithm 3 Function that analyzes the traffic through each link in order to decide if it is appro-
priate to modify them. Each agent invokes this function when a service discovery process that it
initiated ends.

1: function LinkDecayAdaptation(i)
2: if |KA

i | > 0 then
3: for j ∈ KN

i do
4: decay ← decay(Qij)
5: if decay < random then
6: while ¬found ∧ n ∈ KA

i do
7: if rn ∈ demandedRoles then
8: found← true
9: end if

10: end while
11: if found then
12: KA

i ← KA
i − n

13: KN
i ← KN

i ∪ n
14: KN

i ← KN
i − j

15: end if
16: end if
17: end for
18: end if
19: end function

system and the services provided by an agent in the system. This kind of ho-
mophily reflects how important an agent is to the system with regard to the cur-
rent service demand. Structural homophily is used to facilitate the decentralized
self-organization of the system population. In the system, each agent controls the
queries that it receives. The agent classifies each query taking into account the
organizational role associated to its qi. Then, it stores this information and peri-
odically analyzes its structural homophily, (i.e., the agent determines how similar
the services it offers are to the services required in the system). The structural ho-
mophily of an agent with respect the system dynamics is defined by the following
function:

SHi(x) = a · ex·b (4)

where x is the role of agent i that maximizes the following function:

argmax
x∈Ri

a · ex·b (5)

where the a and b parameters are obtained in the InternalStateAnalysis function
(see Algorithm 2 Line 5). SHi ranges in the interval [0,1], where 1 indicates that
the services the agent offers are required in the system, and 0 indicates that the
services the agent offers are not being demanded in the system.

An example of how the structural homophily of agent i is calculated is shown
in Figure 2a. Agent i plays two roles: r1 and r4. At that moment, using the data

23

in qi, the exponential function that estimates the service demand distribution is
eDistr = 1.73 · e−x·1.16. Therefore, the structural homophily of agent i is:

SHi(x) = 1.73 · ex·1.16, (6)

where x is the role that maximizes the function SHi

argmax
r1,r4∈Ri

[1.73 · e−r1·1.16, 1.73 · e−r4·1.16] = argmax
r1,r4

[0.54, 0.018] (7)

Therefore, the value of x that maximizes the function for the structural homophily
SH is r1. Then, x is substituted by r1 in equation 6 and we obtain the structural
homophily of agent i (SHi = 0.54). This value means that the services that agent i
offers are being demanded, but are not the most demanded services in the system.

The population adaptation algorithm (see Algorithm 4) evaluates whether or
not it is worthwhile for an agent to remain in the system. The analysis of the leave
action is based on the following parameters: number of queries received Qi, the
degree of correlation ρi, and structural homophily SHi (Lines 2-8). If the number
of queries received is high enough, ρi is over a certain threshold, and SHi has a
value near 0; then the agent decides to leave the system. However, this does not
always happen. In order to ensure the availability of a certain type of services in
the system, the agent does not leave the system if there is no similar neighbor that
provides similar services (Line 4). Finally, if the agent leaves the system, it breaks
all the connections with all its immediate neighbors and communicates that it is
going to leave. The neighbors will try to find an alternative neighbor based on the
choice homophily connection criterion. Each neighbor will start a search process
of a similar agent to the previous one to establish a new link with it.

If the agent has decided not to leave the system, it analyzes the clone action
(Lines 9-14). This analysis is also based on the three parameters described above.
The main difference is the logistic function for evaluating the significance of the
number of queries received. In this function, the displacement parameter d takes
into account the number of clones that an agent has:

P (Qi, clones) =
1

1 + ·e
−(Qi−2clones)

y

, (8)

where the parameter y is the slope, Qi is the number of queries the agent has re-
ceived, and 2clones is the displacement. A higher value of the displacement implies
that an agent must receive more queries to consider a clone action. The higher the
number of clones that an agent creates, the higher the number of queries should

24

receive. Therefore, the probability of cloning decreases exponentially over time.
In our proposal, it is assumed that there are unlimited resources. Therefore, the
displacement depends on the number of clones that an agent has created previ-
ously. However, in scenarios where there are a limited economical or physical
resources, the displacement could be expressed in terms of other variables.

If the number of queries received is high enough (ρi is over a threshold), and
SHi has a value near 1; then the agent decides to execute the clone action (Line
10). However, this does not always happen. In order to prevent the number of
clones increasing exponentially, there are two more conditions that reduce the
probability of cloning. The agent does not clone if all its neighbors are similar to
it or if the number of queries it forwards has not increased since the last analysis
(Line 11). Taking into account all these conditions, the agent evaluates whether
or not creating a clone is worthwhile. The clone generated by the agent will offer
the same services and play the same roles, and the number of clones it has will
be initialized with the value of its father. The cloned agent establishes links with
other agents in the system taking into account the choice homophily criterion. The
new agent will follow the steps described at the end of Section for new agents that
arrive at the system and want to be part of it. When an agent creates a clone it
resets its internal state.

Algorithm 4 Function that decides the most appropriate action taking into account the current
local view of the agent: remain in the system, leave the system, or clone itself. Each agent invokes
this function when a service discovery process it initiated ends.

1: function PopulationAdaptation(i)
2: pLeave← 1/(1 + ·e−(Qi−d′)/y)
3: if ((Kst

i = STABLE) ∧ (SHi < random) ∧ (pLeave > random)) then
4: if (similarN(Ni) >0) then
5: leave()
6: leave← true
7: end if
8: end if
9: pClone← 1/(1 + ·e−(Qi−2clones)/y)

10: if (Kst
i = STABLE) ∧ (ρi > δ) ∧ ¬leave

∧(SHi) > random)) then
11: if ((similarN(Ni) <| Ni |) ∧ (∆qi > 0)) then
12: clone()
13: end if
14: end if
15: end function

25

6. Results

Several tests were performed to evaluate the effects of the introduction of
adaptation mechanisms in a decentralized service management system. There
were three sets of tests. Each one analyzes the effects of a different adaptation
mechanism on the system performance. The first test set analyzes the influence
of changing structural relations between agents. The second test set is focused on
the effects of agent decisions about remaining in the system, leaving the system,
or cloning themselves. The third test set pays attention to the benefits of integrat-
ing both the changes in structural relations and agent decisions about continuing,
leaving, or cloning.

Specifically, the tests focus on a set of metrics that are meaningful for the anal-
ysis of the performance of the system and for the effects on the service discovery
process when agents incorporate self-organization mechanisms [21] [35]. These
metrics are:

• Average number of steps required to locate an appropriate agent that solves
a query.

• Percentage of queries that are solved before the TTL.

• Communication load improvement: This measures the system improvement
comparing the number of exchanged messages during the service discovery
process when adaptation mechanisms are exploited with respect to the num-
ber of exchanged messages when the system is not self-organized.

CL = 1− number of messages generated in a self-organized system
number of messages generated in a system that is not self-organized

(9)

• Progress: This refers to how the system progressively improves its perfor-
mance using a self-organization mechanism.

• Time for adaptation or Latency: This is the time needed to recover the nor-
mal behavior of the system after a change.

• Structural adaptive cost: This quantifies the number of structural changes
required to adapt the system:

– Number of structural relations between agents that have changed dur-
ing the service discovery process,

26

– Number of agents that clone or leave the system during the service
discovery process.

Each set of tests has a set of 5 networks (undirected, preferential attachment
networks) with 1,000 agents. Agents play one role and offer one semantic web
service associated to this role. Initially, agents are uniformly distributed over 16
roles, which are defined in an organizational ontology. The set of semantic service
descriptions used for the experiments have been taken from the OWL-S TC4 test
collection 1.

All the agents in the system have the same probability of generating service
queries. A query consists of two features that characterize the required provider
agent: the role and the service. The query is successfully solved when an agent
that offers a similar service (i.e., the degree of semantic match between the seman-
tic service descriptions is over a threshold ε = 0.75) is found before the specified
Time To Live (TTL = 100). The TTL parameter determines the maximum num-
ber of forwarding actions allowed in the system for a concrete query. We evaluated
how the variation of the value of this parameter affects to the discovery process
using different search strategies (see Figure 4). As it was expected, higher values
of TTL offered the opportunity to improve the success rate. In the experiments,
we considered a TTL = 100 to give the chance to reach the target. We assume
that all agents are collaborative, that is, agents will fulfill the rules and redirect the
queries.

Query distribution in the system is modeled as an exponential distribution
(λ = 0.7) where there are services offered by certain roles that are the most
demanded and the rest of services have a lower demand rate [2, 20]. If agents
play a role and offer a service that are similar to the most demanded roles and
services in the system, then they have a low probability of generating queries that
are dissimilar to them. Otherwise, agents that play a role and offer a service that
are not similar to the most demanded roles and services have a high probability of
generating dissimilar queries to their service provision abilities. Once the system
population is self-adapted to the service demand (i.e., agents that provide services
that are not demanded leave the system and agents with demanded services create
clones), the majority of the agents have a low probability of generating dissimilar
queries to their service abilities. In the experiments, we made a snapshot of all the
metrics every 10,000 queries in order to see the evolution of the system.

1http://www.semwebcentral.org/projects/owls-tc/

27

 5

 10

 15

 20

 25

 30

 35

 30 40 50 60 70 80 90 100

A
v.

 p
a
th

 l
e
n
g

th

TTL

CHN
VHN

Degree
Random

Similarity

 30

 40

 50

 60

 70

 80

 90

 100

 30 40 50 60 70 80 90 100

%
 s

u
cc

e
ss

TTL

CHN
VHN

Degree
Random

Similarity

Figure 4: Influence on the average path length and on the success of the TTL parameter when dif-
ferent search strategies are used. The difference among them is how the most promising neighbor
is selected in each step (Random: a search process that uses random walks; Degree: a search pro-
cess that uses only degree of connection information; Similarity: a search process that uses only
service similarity information; VHN: a mixed search process that uses a combination of degree
of connection and service similarity; CHN: a mixed search process that is based on the degree
of connection, and service and role similarity). Higher values of TTL offered the opportunity to
search strategies such as random walks and similarity to improve their success rate. The search
strategy based on CH offered the shortest paths and the TTL had not a significant influence in its
performance.

6.0.1. Changing Structural Relations
The first set of tests evaluated the effects of introducing self-organization

mechanisms that modify the structural links between agents. Specifically, we eval-
uated the mechanism based on the decay of the structural links between agents.
We compared the obtained results with another mechanism that is based on a Re-
inforcement Learning (RL) algorithm called Weighted Policy Learner (WPL)[1].
We chose this algorithm to compare our approach because RL is a common ap-
proach for solving multi-agent decision problems and specifically, the proposal
presented in [1] is the first one to study and analyze the interaction between learn-
ing and self-organization.

WPL uses a learning strategy that is similar to WoLF [6]. As in many RL
algorithms, WPL makes use of two matrices, πi and Qi, for each agent. In the
the context of service discovery, πi represents the neighbors of an agent and their
suitability to forward queries of certain type. Thus, the organizational roles are
the states of πi and the actions are the neighbors. The states are updated with the
feedback obtained from the routing process. The matrix Qi stores the rewards,
which are based on the success of the previous searches. πi values are initialized
using semantic similarity values. The WPL algorithm is based on the following

28

idea: to slow down learning when moving away from a stable policy and to speed
up learning when moving towards the stable policy. The decision-making algo-
rithm for establishing when it is appropriate to add or remove a link is based on
a re-organization parameter (Po), and on the average degree of connection of the
network.

In the experiments, we considered different values for configuration parame-
ters that are meaningful in both self-organization mechanisms. Specifically, we
analyzed the influence of parameters that make agents be more resilient to struc-
tural changes or be more prone to making structural changes. In the case of our
self-organization mechanism, which is called Decay-based, this parameter is
the displacement z (see Equation 3). In the case of the reinforcement learning
mechanism, which is called RL-based, this parameter is the re-organization pa-
rameter Po. We evaluated both mechanisms and the influence of their configura-
tion parameters in two different scenarios. In the first scenario we tested several
values for the configuration parameters z and Po. We performed an analysis to
determine the configurations that offered the best results for each mechanism. In
the second scenario, we only considered these configurations under changes in the
service demand distribution.

6.1. First Scenario: static service demand.
In the first scenario, the agents were initially distributed over the different

organizational roles uniformly, and the queries that agents generated followed an
exponential distribution (λ = 0.7) over the organizational roles. We chose an
average degree of connection d = 4 because with RL-based mechanism a lower
value divided the network into isolated parts.

Each graph has associated a table that contains the results obtained in cer-
tain snapshots sn, including the error interval. The results obtained in the first
snapshots (sn = 1 and sn = 5) are shown since there were more significant dif-
ferences between mechanisms and configurations. The last snapshot sn = 50 is
also shown since it reflects the final results when the system was adapted. For
reasons of clarity, the error intervals of the results are not shown in the graphs.

Figure 5 shows that the introduction of self-organization mechanisms consid-
erably reduces the number of steps required to reach a suitable provider agent.
The x-axis represents the snapshots, and the y-axis indicates the average num-
ber of steps. Initially, the average number of steps was near 25 and decreased
to 7 steps in a few snapshots. In the case of the RL-based mechanism, the
re-organization parameter with value Po = 0.002 offered better results (see Ta-
ble 1 (Left)). In these configurations, agents are prone to change their structural

29

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50

n
u
m

b
e
r

o
f

st
e
p

s

snapshot

z=100
z=300
z=500

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50

n
u
m

b
e
r

o
f

st
e
p

s

snapshot

Po=0.0002
Po=0.002

Po=0.02

Figure 5: Average path length obtained when agents use link-based adaptation mechanisms: (Left)
Decay-based, (Right) RL-based.

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50

%
 o

f
su

cc
e
ss

fu
l
se

a
rc

h
e
s

snapshot

z=100
z=300
z=500

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50

%
 o

f
su

cc
e
ss

fu
l
se

a
rc

h
e
s

snapshot

Po=0.0002
Po=0.002

Po=0.02

Figure 6: Percentage of successful searches (searches that are solved before the TTL) when agents
use link-based adaptation mechanisms: (Left) Decay-based, (Right) RL-based.

Av. path
sn = 1 sn = 5 sn = 50

z = 100 8.07 ± 1.03 4.81 ± 0.51 3.45 ± 0.24
z = 300 8.96 ± 0.78 6.70 ± 0.76 4.59 ± 0.52
z = 500 10.02 ± 2.35 7.42 ± 0.80 5.33 ± 0.98

Po = 0.0002 22.85 ± 5.63 18.37 ±7.45 23.76 ± 6.90
Po = 0.002 18.46 ± 2.34 11.12 ±6.25 6.87 ± 0.53
Po = 0.02 13.16 ±6.41 8.14 ± 1.14 10.36 ± 2.25

% Success
sn = 1 sn = 5 sn = 50

z = 100 96.59 ± 0.94 97.71 ± 0.89 98.21 ± 0.23
z = 300 95.47 ± 1.72 97.12 ± 1.5 98.18 ± 0.54
z = 500 96.09 ± 1.42 96.42 ± 1.06 97.94 ± 0.92

Po = 0.0002 86.73 ± 18.70 90.52 ± 15.06 95.65 ± 3.78
Po = 0.002 89.83 ± 15.14 97.35 ± 0.82 97.34 ± 1.20
Po = 0.02 91.83 ± 7.32 96.10 ± 5.11 96.07 ± 3.15

Table 1: (Left) Average path length, and (Right) percentage of successful queries in different
snapshots sn when agents change their structural relations using Decay-based or RL-based
mechanisms in the discovery process.

links. The Decay-based method is less sensitive to configuration parameters
than RL-based, and, in general, the improvement in the average path length
for the Decay-based method was better than the improvement obtained with
RL-based mechanism.

30

Figure 6 shows the effects on the success of the service discovery process.
The x-axis shows the snapshots, and the y-axis shows the percentage of queries
that were solved by a provider agent before the TTL. In general, both approaches
improved the percentage of queries that ended successfully in the system. This
improvement was achieved in the first snapshots and then remained constant. In
the case of the Decay-based mechanism, there was no difference between the
results obtained with the different values of the z parameter. In the case of the
RL-based mechanism, the difference between the results obtained with Po =
0.002, Po = 0.02 and Po = 0.0002 was more relevant in the first adaptation steps,
and then this difference decreased. It can be concluded that systems that require a
faster adaptation should use values between 0.002 and 0.02 for parameter Po.

Figure 7 shows the number of structural relations that agents change in order
to improve the system performance. The results show that the Decay-based
mechanism allowed agents to be aware of the variations in the service demand;
therefore, they realized that structural changes were needed to adapt some of their
links according to the new situation. This fact can be observed in the first five
snapshots, where the number of rewired links is greater than in the following
snapshots. If the rewiring action implies a cost, the most suitable configuration is
z = 300 since agents consider the rewiring action, but the number of structural
changes is not as significant as with the configuration z = 100. In the case of the
RL-based mechanism, this only occurred when the re-organization parameter
was Po = 0.02 or Po = 0.002. With lower values of Po, the agents were less prone
to make many structural changes and the structural changes followed a constant
rate.

Figure 8 shows the improvement in the communication load when the system
is adapted with respect to when agents do not include adaptation mechanisms. In
general, it can be observed that both mechanisms considerably reduced the com-
munication load. The Decay-based mechanism introduced an improvement
of over 0.5 independently of the values of the parameter z. In the case of the
RL-based mechanism, the communication load is also decreased, but it took
more time and there was more variability in the results. This is because the adap-
tation process with this mechanism takes more time.

In general, the Decay-based mechanism provides a more reactive adap-
tation behavior that makes agents modify many structural relations when they
detect a significant change in its internal state. The best configurations were ob-
tained with z = 100 and z = 300. These two configurations were similar. Both
offered good results in path length, success, and communication load. The best
results are obtained by the configuration with z = 100. However, this configura-

31

 0

 100

 200

 300

 400

 500

 600

 700

 0 10 20 30 40 50

n
u
m

b
e
r

o
f

re
w

ir
e
d

 l
in

ks

snapshot

z=100
z=300
z=500

 0

 100

 200

 300

 400

 500

 600

 700

 0 10 20 30 40 50

n
u
m

b
e
r

o
f

re
w

ir
e
d

 l
in

ks

snapshot

Po=0.0002
Po=0.002

Po=0.02

Figure 7: Number of structural relations rewired when agents use link-based adaptation mecha-
nisms: (Left) Decay-based, (Right) RL-based.

-1

-0.5

 0

 0.5

 1

 0 10 20 30 40 50

co
m

m
u
n
ic

a
ti

o
n
 l
o
a
d

 i
m

p
ro

v
e
m

e
n
t

snapshot

z=100
z=300
z=500

-1

-0.5

 0

 0.5

 1

 0 10 20 30 40 50

co
m

m
u
n
ic

a
ti

o
n
 l
o
a
d

 i
m

p
ro

v
e
m

e
n
t

snapshot

Po=0.0002
Po=0.002

Po=0.02

Figure 8: Communication load metric when agents use link-based adaptation mechanisms: (Left)
Decay-based, (Right) RL-based.

tion cause a high number of structural changes. In scenarios where the cost of the
structural changes is significant, this configuration may not be appropriate, and
the configuration with z = 300 could be considered to be more suitable in reduce
the costs. The RL-based mechanism with parameter configurations Po = 0.002
and Po = 0.02 considered more structural changes than Po = 0.0002. Therefore,
the behavior of the RL-based mechanism with Po = 0.002 and Po = 0.02 is
more appropriate for dynamic environments whereas Po = 0.0002 is suitable for
less dynamic environments where the service demand distribution remains with-
out changes during a long period of time after a change.

6.2. Second Scenario: dynamic service demand.
In the second scenario, the link-based self-organization mechanisms were eval-

uated, taking into account a service demand distribution that changes over time.
The service demand distribution changed in intervals of 500,000 queries. Dur-
ing these intervals, snapshots were made every 10,000 queries in order to see the

32

Number of rewired links
sn = 1 sn = 5 sn = 50

z = 100 546.2 ± 37.44 289.4 ± 62.38 219.8 ± 78.25
z = 300 183.4 ± 41.73 72.2 ± 20.68 34.0 ± 14.45
z = 500 119.6 ± 23.79 28.8 ± 12.72 15.6 ± 14.69

Po = 0.02 12.6 ± 3.63 12.0 ± 5.11 7.4 ± 2.65
Po = 0.002 113.4 ± 28.17 86.0 ± 4.11 36.2 ± 8.16
Po = 0.02 622.6 ± 91.84 333.6 ± 35.59 301.4 ± 47.40

Communication load improvement
sn = 1 sn = 5 sn = 50

z = 100 0.62 ± 0.02 0.76 ± 0.03 0.82 ± 0.01
z = 300 0.55 ± 0.03 0.68 ± 0.05 0.78 ± 0.02
z = 500 0.54 ± 0.05 0.63 ± 0.04 0.75 ± 0.01

Po = 0.0002 -0.12 ± 0.41 0.12 ± 0.51 0.47 ± 0.27
Po = 0.002 0.09 ± 0.45 0.54 ± 0.20 0.68 ± 0.039
Po = 0.02 0.32 ± 0.39 0.60 ± 0.17 0.53 ± 0.10

Table 2: (Left) Number of structural relations rewired, and (Right) Communication load
improvement in different snapshots sn when agents use link-based adaptation mechanisms:
Decay-based, and RL-based.

system evolution. There were two intervals. In previous works, we tested the self-
organization of the system with different query distributions [10]. In these exper-
iments, we considered the exponential distribution since it is commonly present
in large-scale service environments [2, 20]. In the first interval (snapshots in the
range [0,50]), the service demand followed an exponential distribution (λ = 0.7).
In the second interval (snapshots in the range [50,100]), the service demand also
followed an exponential distribution. However, in the second interval, the most
demanded services were those that were less demanded in the previous interval.
We considered this new distribution for the second interval in order to see the
behavior of the mechanisms in the worst scenario (i.e., the scenario where the
distribution is the opposite to the previous one). In this second scenario, we only
show the results obtained with the best configurations of each mechanism: for
Decay-based mechanism z = 300 and z = 100, and for RL-based mecha-
nism Po = 0.002.

Figure 9 (Left) shows the effects of adaptation mechanisms on the path length
under dynamic service demand. For the Decay-based algorithm, the adap-
tation mechanism considerably reduced the average number of steps required to
reach the target service in the first interval. There was no a significant differ-
ence between the results obtained with Decay-based and different values of
z. The adaptation achieved in the first interval was better than in the following
interval since in the first interval there was no historical information about dif-
ferent previous service demands, which introduces noise in the internal state of
the agents. The agents should realize that they must reset their current view of
the service demand, and afterwards, collect information about the new service de-
mand in order to accurately analyze the utility of their links. In snapshot 50, there
was a sharp rise, which indicates that the service demand changed and the sys-

33

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50 60 70 80 90

n
u
m

b
e
r

o
f

st
e
p

s

snapshot

Decay-based z=100
Decay-based z=300
RL-based Po=0.002

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90

%
 o

f
su

cc
e
ss

fu
l
se

a
rc

h
e
s

snapshot

Decay-based z=100
Decay-based z=300
RL-based Po=0.002

Figure 9: (Left) Average number of steps required to reach the desirable provider agent, and
(Right) percentage of successful queries when there are dynamic changes in the service demand
and agents use link-based adaptation mechanisms: Decay-based and RL-based.

tem was not adapted. At the beginning of the second interval, the service demand
changed to the worst case, which was the inverse service demand distribution.
For this reason, in the second interval, the number of structural changes required
was greater than in the previous interval, and the differences between the results
obtained with Decay-based and different values for z parameter were more
significant. The best results were obtained with z = 100, which was the config-
uration for agents that were more prone to make structural changes. Note that in
this second interval, the error intervals were bigger (most of all at the beginning
of the second interval), which means that there was more variability in the num-
ber of steps required to find a service (see Table 3). Something similar happened
with the RL-based adaptation mechanism. However, there were a few differ-
ences with respect to the Decay-based mechanism. The average path length
obtained using the RL-based mechanism was longer (7 steps in the first interval
and 10 steps in the second interval). Moreover, the error intervals were larger,
which introduces more uncertainty in the results (see Table 3).

Figure 9 (Right) shows the success rate in different intervals. Both adapta-
tion strategies obtained good results (over the 95% in the majority snapshots).
This percentage decreased sharply at the beginning of the second interval, when
there was a considerably large change in the service demand distribution. How-
ever, the system was able to recover its success rate quickly. The latency of the
Decay-based mechanism with z = 100 was lower than the RL-based mech-
anism. Therefore, we can conclude that the Decay-based is more appropriate
for dynamic environments.

Figure 10 (Left) shows the number of rewired structural relations to deal with
variations in the service demand distribution at each moment. For Decay-based

34

Av. path
sn = 1 sn = 5 sn = 50 sn = 51 sn = 55 sn = 99

z = 100 8.07 ± 1.03 4.81 ± 0.51 3.45 ± 0.24 16.40 ± 2.16 7.18 ± 0.54 4.41 ± 0.32
z = 300 8.96 ± 0.78 6.70 ± 0.76 4.59 ± 0.52 18.92 ± 3.89 11.32 ± 1.30 6.37 ± 1.11

Po = 0.002 18.46 ± 2.34 11.12 ±6.25 6.87 ± 0.53 17.02 ± 5.98 13.69 ± 0.92 10.21 ± 1.36

% Success
sn = 1 sn = 5 sn = 50 sn = 51 sn = 55 sn = 99

z = 100 96.59 ± 0.94 97.71 ± 0.89 98.21 ± 0.23 87.14 ± 2.99 96.38 ± 1.47 97.70 ± 0.59
z = 300 95.47 ± 1.72 97.12 ± 1.5 98.18 ± 0.54 82.57 ± 15.63 92.51 ± 5.08 97.19 ± 2.0

Po = 0.002 89.83 ± 15.14 97.35 ± 0.82 97.34 ± 1.20 83.92 ± 4.67 92.69 ± 8.39 96.72 ± 2.32

Table 3: (Up) Average path length, and (Down) Percentage of successful searches in different
snapshots sn when service demand changes and agents use link-based adaptation mechanisms:
Decay-based, and RL-based.

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60 70 80 90

n
u
m

b
e
r

o
f

re
w

ir
e
d

 l
in

ks

snapshot

Decay-based z=100
Decay-based z=300
RL-based Po=0.002

-1

-0.5

 0

 0.5

 1

 0 10 20 30 40 50 60 70 80 90

co
m

m
u
n
ic

a
ti

o
n
 l
o
a
d

 i
m

p
ro

v
e
m

e
n
t

snapshot

Decay-based z=100
Decay-based z=300
RL-based Po=0.002

Figure 10: (Left) Number of structural relations rewired, and (Right) Communication load im-
provement when the service demand changes and agents use link-based adaptation mechanisms:
Decay-based and RL-based.

35

Communication load improvement
sn=1 sn=5 sn=50 sn=51 sn=55 sn=99

z = 100 0.62 ± 0.02 0.76 ± 0.03 0.82 ± 0.01 0.086 ± 0.12 0.64 ± 0.05 0.77 ± 0.02
z = 300 0.55 ± 0.03 0.68 ± 0.05 0.78 ± 0.02 -0.11 ± 0.47 0.39 ± 0.16 0.69 ± 0.07

Po = 0.002 0.09 ± 0.45 0.54 ± 0.20 0.68 ± 0.039 -0.02 ± 0.17 0.32 ± 0.25 0.55 ± 0.09

Number of rewired links
sn = 1 sn = 5 sn = 50 sn = 51 sn = 55 sn = 99

z = 100 546.2 ± 37.44 289.4 ± 62.38 219.8 ± 78.25 1058.8 ± 113.27 447.0 ± 115.59 366.6 ± 125.29
z = 300 183.4 ± 41.73 72.2 ± 20.68 34.0 ± 14.45 376.0 ± 91.58 85.0 ± 53.86 35.8 ± 31.39

Po = 0.002 113.4 ± 28.17 86.0 ± 4.11 36.2 ± 8.16 55.0 ± 10.59 41.0 ± 11.82 22.0 ± 6.78

Table 3: Number of structural relations rewired in different snapshots sn when agents use link-
based adaptation mechanisms, Decay-based and RL-based,and the service demand changes.

Communication load improvement
sn=1 sn=5 sn=50 sn=51 sn=55 sn=99

z = 100 0.62 ± 0.02 0.76 ± 0.03 0.82 ± 0.01 0.086 ± 0.12 0.64 ± 0.05 0.77 ± 0.02
z = 300 0.55 ± 0.03 0.68 ± 0.05 0.78 ± 0.02 -0.11 ± 0.47 0.39 ± 0.16 0.69 ± 0.07

Po = 0.002 0.09 ± 0.45 0.54 ± 0.20 0.68 ± 0.039 -0.02 ± 0.17 0.32 ± 0.25 0.55 ± 0.09

Table 4: Communication load improvement in different snapshots sn when agents use different
adaptation mechanisms, Decay-based, and RL-based, and the service demand changes.

This improvement is influenced by the number of structural changes as well as
by the path length and the success in the discovery process. In the case of the
Decay-based mechanism, the best results are obtained with z = 100. Note that
the results obtained with z = 300 are not as good as the results with z = 100, but
considering that the number of structural changes are lower, the improvement in
the communication load is quite good. In the case of the RL-based mechanism
the improvement is not as significant as with the Decay-based.

In general, we conclude that both mechanisms offer good results for self-
organization of structural relations between agents. However, the Decay-based
self-organization mechanism offers better results than the RL-based mecha-
nism. the main differences are in the number of structural changes, in the av-
erage path length, and in the improvement of the communication load. Moreover,
the latency of the system to achieve a suitable self-organization is greater with
RL-based mechanism than with Decay-based mechanism.

4.2. Population self-organization: Leave, Clone, or Remain
In the second set of tests, we evaluate the effects of local decisions of agents

about continuing in the system, leaving the system, or continuing and cloning
themselves in order to adapt the population of the system accordingly to the ser-
vice demand. Initially, agents are distributed uniformly over the set of roles de-
fined in the system. Agents have an average degree of connection of 2.5. The
service demand in these experiments is dynamic. We have defined two intervals

34

Table 4: (Up) Number of structural relations changed, and (Down) Communication improvement
in different snapshots sn when service demand changes and agents use link-based adaptation
mechanisms: Decay-based, and RL-based.

mechanism with z = 100, there was a substantial peak in the number of rewired
relationships at the beginning of each interval when the service demand changed.
This peak means that agents, considering their local view, were aware that there
was a change in the services that were being demanded in the system, and, there-
fore, there were links that started to be useless. Agents with parameter z = 100
were more prone to changes, and they did not wait very long to decide to rewire
these useless relations to more profitable ones with other agents. However, note
that the results obtained with z = 100 had greater error intervals, which indicates
the variability in the number of changes in the structural relations (see Table 4).
The results obtained with z = 300 considerably decreased the number of struc-
tural changes and the error intervals since agents wait to receive a higher number
of queries before considering the rewiring action. These results show that this
configuration also offers a high degree of adaptation. Note that if the change in
the service demand is significant (such as in the second interval), the agents note
this fact and the number of the structural changes increases accordingly. For the
RL-based mechanism in our test, the number of structural changes was not as
significant as in the Decay-based mechanism. This indicates that there is an
increase in the latency of the system to achieve a suitable adaptation.

Figure 10 (Right) shows the improvement introduced in the communication
load of the system with adaptation mechanisms as the service demand changes.
This improvement is influenced by the number of structural changes as well as by
the path length and the success in the discovery process. For the Decay-based
mechanism, the best results were obtained with z = 100. Note that the results

36

Network properties
prop. sn=1 sn=50 sn=99

z = 100 CH 0.57 0.18 0.17
C 0.032 0.011 0.008
k 4.25 4.30 4.47
D 14.0 11.39 10.19
p 5.95 4.61 4.67

z = 300 CH 0.57 0.20 0.19
C 0.032 0.008 0.0049
k 4.25 4.27 4.33
D 14.0 11.0 10.80
p 5.95 4.77 4.71

Po = 0.002 CH 0.57 0.45 0.53
C 0.0328 0.017 0.017
k 4.25 4.70 5.39
D 14.0 10.39 8.60
p 5.95 4.90 4.59

Table 5: Network properties in different snapshots sn when agents use different adaptation mech-
anisms, Decay-based, and RL-based, and the service demand changes. The network prop-
erties are: CH choice homophily, C clustering coefficient, k average degree of connection, D
diameter, and p average path length.

obtained with z = 300 were not as good as the results with z = 100; however,
considering that the number of structural changes was lower, the improvement
in the communication load was quite good. For the RL-based mechanism, the
improvement was not as significant as with the Decay-based.

Network properties change as the self-organization process evolves. In Table
5, we show the properties in certain snapshots. It can be observed that as the
agents adapt their links considering the service demand, the choice homophily
in the network decreases as well as the clustering coefficient. This fact is due
to the fact that agents establish new links with other agents that play demanded
roles, and they do not consider homophily in that process. However, there is
still a degree of homophily in the network. Another consequence of the self-
organization in the network structure is that the average degree of connection and
the diameter are reduced. The effects of self-organization in the network structure
are less important in networks where agents use RL-based mechanisms since
less structural changes are made by the agents. Regarding the structural properties
of the network, we can conclude that the network structure looses a certain degree
of homophily in order to adapt itself to the service demand. The effects of the
self-organization in the network structure reduce its diameter and the average path
length.

In general, we can conclude that both mechanisms offer good results for self-

37

organization of structural relations between agents. However, the Decay-based
self-organization mechanism offers better results than the RL-based mecha-
nism. The main differences are in the number of structural changes, in the average
path length, and in the improvement of the communication load. Moreover, the
latency of the system to achieve a suitable self-organization is greater with the
RL-based mechanism than with the Decay-based mechanism. For highly
dynamic environments, the Decay-based mechanism is more appropriate.

6.3. Population self-organization: Leave, Clone, or Remain
In the second set of tests, we evaluated the effects of local Population-based

mechanism that considers decisions about continuing in the system, leaving the
system, or continuing and cloning themselves in order to adapt the population
of the system according to the service demand. Initially, agents were distributed
uniformly over the set of roles defined in the system. The agents had an aver-
age degree of connection of 2.5. There are two reasons to choose this degree of
connection. One reason is to evaluate the performance of networks and search al-
gorithms when connection parameters are at limit. The other reason is that could
be scenarios where the maintenance of links is costly, therefore, it is interesting
to see the behavior of networks when the average number of connections is low.
The service demand in these experiments was dynamic. As in the previous test,
two intervals were defined, changing the distribution of the demanded services. In
the first interval, there was a set of services that were more demanded than others
following an exponential distribution (λ = 0.7). In the second interval, the least
demanded services were the services that were most demanded in the previous
interval. Note that this was the worst scenario. Each interval consisted of a set of
50 snapshots. A snapshot contained 10,000 queries. The tables with results are
not shown here since the graphs clearly show the results with the error intervals.

Figure 11 (Left) shows the effects of local decisions of agents about their po-
sition in the network on the path length of the service discovery process. As the
figure shows, the two intervals where there were different service demands are
clearly defined by a sharp increase in the path length in the service discovery pro-
cess. This increase was more significant at the beginning of the second interval
since the population of the system was adapted to the opposite service demand.
At the beginning of the first interval, this increase was not as significant since, ini-
tially, agents were distributed uniformly over the roles of the system, (i.e., there
were the same number of agents that played each role). At the end of the first
interval, the distribution of the number of agents per role followed an exponential
distribution, where the number of agents that offered services of certain roles was

38

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50 60 70 80 90

n
u
m

b
e
r

o
f

st
e
p

s

snapshot

Agents adaptation

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90

%
 o

f
su

cc
e
ss

fu
l
se

a
rc

h
e
s

snapshot

Agents adaptation

Figure 11: (Left)Average number of steps required to locate the provider agent of the required
service, and (Right) Percentage of successful queries when agents use Population-based
adaptation mechanism.

higher than the number of agents that played other roles. For this reason, at the
beginning of the second interval, where the service demand followed the opposite
service distribution as the first interval, the average path length increased sharply.
At that moment, there were only a few agents that offered services that were being
demanded, and there was a low probability of locating the required services until
the agent population was adapted to the new service demand. Note that the in-
crease of the path length in this scenario was higher than in scenarios where only
link-based organization mechanisms were introduced. This is because the degree
of adaptation achieved by changing the population of the system was greater, and,
therefore, the effects of changes in the service demand had more significant ef-
fects. The local decisions of agents about their position in the system reduced the
number of steps required to reach the provider agent needed.

Figure 11 (Right) shows the effects of local decisions of agents about leaving
or cloning themselves in the service discovery success. The Population-based
mechanism considerably increased the percentage of successful searches, and it
was able to deal with service demand changes. Note that, in the second inter-
val, the error intervals indicate that there was a higher variability in the success
rate. This is because the service demand changed to the opposite service demand;
therefore, a higher variability in the system adaptation was introduced and, con-
sequently, in the success of the service discovery process.

Figure 12 (Left) shows the number of agents that decided to create a clone or
leave the system. It can be observed that, when there was a change in the service
demand, the agents that offered some services became aware that these services
were not in demand and decided to leave the system. The number of agents that
decided to leave the system was greater at the beginning of each interval, and

39

 0

 100

 200

 300

 400

 500

 600

 700

 0 10 20 30 40 50 60 70 80 90

n
u
m

b
e
r

o
f

a
g

e
n
ts

snapshot

Deleted
Cloned

-1

-0.5

 0

 0.5

 1

 0 10 20 30 40 50 60 70 80 90

co
m

m
u
n
ic

a
ti

o
n
 l
o
a
d

 i
m

p
ro

v
e
m

e
n
t

snapshot

Figure 12: (Left) Number of agents that decide to clone or leave the system, and (Right) Commu-
nication load improvement as the service demand distribution changes.

especially in the second interval, since at the end of the first interval, the majority
of the system population was offering services that were demanded in that interval,
but were now the least demanded. At the beginning of an interval, the decision
to clone themselves was taken by a lower number of agents than the decision to
leave the system, since the decision of this action required the consideration of
more information. However, as time passed, the number of agents that decided to
clone themselves was higher than the number of agents that decided to leave the
system. The trend for both actions (leaving and cloning) gradually diminished as
the system became adapted.

Figure 12 (Right) shows the improvement in the communication load in the
system. It can be observed that the self-organization of the population signifi-
cantly reduced the communication load. The latency to recover the normal be-
havior of the system was shorter in the first interval because the agents did not
have previous information about a different service demand that introduced noise
in their local view. Agents were able to adapt to the service demand in the first 10
snapshots. In the second interval, the latency was greater than in the first interval.
The adaptation of the population to the service demand took 20 snapshots. The
progress in each interval followed a logarithmic curve, where the greater changes
were at the beginning and then the system stabilized.

Table 6 shows the properties of the networks in different snapshots when
agents use Population-based mechanisms for self-organization. The initial
network homophily is lower than in previous scenarios since the average degree of
connection is lower. The homophily in the network decreases as the system self-
organizes its structure according to the service demand. The clustering coefficient
does not decrease as much as the homophily degree since there are not so many
link changes based on service demand as in previous scenarios. When agents

40

Network properties
prop. sn=1 sn=50 sn=99

Population-based CH 0.35 0.32 0.22
C 0.0037 0.0036 0.003
k 2.53 3.05 3.14
D 18.60 14.19 12.0
p 8.25 6.52 5.92

Table 6: Network properties in different snapshots sn when agents use Population-based
mechanisms and the service demand changes. The network properties are: CH choice homophily,
C clustering coefficient, k average degree of connection, D diameter, and p average path length.

create a clone or leave the system, agents create and establish new links based
on homophily criterion. It can be observed that the self-organization reduces the
network diameter and the average path length.

6.4. Combining Self-Adaptation Strategies
The third set of tests evaluated the combination of the two self-organization

mechanisms proposed in this paper: Decay-based mechanism with z = 100
and Population-based mechanism. We selected the value z = 100 since we
do not consider that structural changes imply a cost. In scenarios where there is
a cost in the structural changes, the Decay-based mechanism with z = 300 is
more appropriate. As in the previous test, we evaluated the effects of this combi-
nation in a dynamic environment where the service demand changed in each in-
terval. An interval contained 50 snapshots and each snapshot consisted of 10,000
queries. Initially, the agents were uniformly distributed over the organizational
roles. The average degree of connection of an agent was 2.5.

Figure 13 shows the results related to the path length of the search process. As
in previous experiments, there was a sharp increase at the beginning of the second
interval; then the number of steps required to locate the provider agent went down
and finally remained constant. One of the differences between considering the
two mechanisms together or separately was that, at the beginning of each interval,
the peak of the number of steps increased more when the two mechanisms were
combined. This was because the system achieved a better adaptation to the current
service demand, and, therefore, agents required more steps at the beginning of
the next interval when the service demand changed. Another difference was the
variability in the path length. This variability was reduced when the mechanisms
were combined (see Table 7). This is clearly observed in the results obtained in the
second interval, where there was a service demand that was completely different
to the previous one. This fact is because the adaptation to the service demand of

41

 0

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50 60 70 80 90

n
u
m

b
e
r

o
f

st
e
p

s

snapshot

Links z=100
Links+Ag z=100

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90

%
 o

f
su

cc
e
ss

fu
l
se

a
rc

h
e
s

snapshot

Links z=100
Links+Ag z=100

Figure 13: (Left) Average path, and (Right) Percentage of successful queries when agents include
Decay-based and Population-based mechanisms in the discovery process.

Figure 16: Average path when agents include Decay-based and Population-based mech-
anisms in the discovery process.

Av. path
sn = 1 sn = 5 sn = 50 sn = 51 sn = 55 sn = 99

z = 100 13.29 ± 1.60 8.84 ± 0.93 6.69 ± 0.6 23.39 ± 3 13.92 ± 2.30 7.56 ± 0.76
Links + Agz = 100 13.73 ± 1.5 10.01 ± 1.51 6.32 ± 0.89 30.98 ± 1.14 11.77 ± 1.73 6.26 ± 0.95

Table 1: Average path in different snapshots sn when agents include Decay-based and
Population-based mechanisms in the discovery process.

% Success
sn = 1 sn = 5 sn = 50 sn = 51 sn = 55 sn = 99

z = 100 94.28 ± 3.33 94.16 ± 3.73 95.13 ± 0.85 72.64 ± 7.51 88.18 ± 5.56 94.0 ± 1.81
Links + Agz = 100 93.10 ± 2.52 93.93 ± 0.91 93.83 ± 1.85 68.7 ± 14.55 94.50 ± 2.05 94.67 ± 2.27

Table 2: Success in different snapshots sn when agents include Decay-based and
Population-based mechanisms in the discovery process.

38

Figure 16: Average path when agents include Decay-based and Population-based mech-
anisms in the discovery process.

Av. path
sn = 1 sn = 5 sn = 50 sn = 51 sn = 55 sn = 99

z = 100 13.29 ± 1.60 8.84 ± 0.93 6.69 ± 0.6 23.39 ± 3 13.92 ± 2.30 7.56 ± 0.76
Links + Agz = 100 13.73 ± 1.5 10.01 ± 1.51 6.32 ± 0.89 30.98 ± 1.14 11.77 ± 1.73 6.26 ± 0.95

Table 1: Average path in different snapshots sn when agents include Decay-based and
Population-based mechanisms in the discovery process.

% Success
sn = 1 sn = 5 sn = 50 sn = 51 sn = 55 sn = 99

z = 100 94.28 ± 3.33 94.16 ± 3.73 95.13 ± 0.85 72.64 ± 7.51 88.18 ± 5.56 94.0 ± 1.81
Links + Agz = 100 93.10 ± 2.52 93.93 ± 0.91 93.83 ± 1.85 68.7 ± 14.55 94.50 ± 2.05 94.67 ± 2.27

Table 2: Success in different snapshots sn when agents include Decay-based and
Population-based mechanisms in the discovery process.

38

Table 7: (Up) Average path length, and (Down) Percentage of successful searches in dif-
ferent snapshots sn when service demand changes and agents include Decay-based and
Population-based mechanisms in the discovery process.

the Population-based mechanism reduced the number of rewired structural
relations needed. Also, the inclusion of the Population-based mechanism
reduced the latency of the system to adapt to the new service distribution.

Figure 13 (Right) shows the effects of the combination of the two adaptation
strategies on the success rate of the service discovery process in the system. At
the beginning of an interval where the service demand changed considerably, there
was a drop in the percentage of successful searches. The latency of the adaptation
at the beginning of an interval was lower when the two mechanisms were com-
bined. The system was able to recover from this situation quickly and achieved
a success rate of nearly 95%. This success rate was maintained throughout the
entire interval. The drop in the intervals was more significant when the two self-
organization mechanisms were combined because the system was more adapted
to the service demand. Note that a better system adaptation reduced the variabil-

42

-1

-0.5

 0

 0.5

 1

 0 10 20 30 40 50 60 70 80 90

co
m

m
u
n
ic

a
ti

o
n
 l
o
a
d

 i
m

p
ro

v
e
m

e
n
t

snapshot

Links z=100
Links+Ag z=100

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 10 20 30 40 50 60 70 80 90

n
u
m

b
e
r

o
f

re
w

ir
e
d

 l
in

ks

snapshot

Links z=100
Links+Ag z=100

Figure 14: (Left) Improvement in the communication load, and (Right) Number of structural
changes when Decay-based and Population-based mechanisms are combined.

ity in the obtained results, mainly when the changes in the service demand were
significant (see Table 7).

Figure 14 (Left) shows the results related to the communication load in the
system. In general, the improvement of the communication load when there was
a change in the service demand was reduced. However, the system was able to
recover and improve the communication cost significantly (around 50%). Note,
that the combination of the two strategies reduced variability (see Table 8).

With regard to the structural self-organization cost, the combination of the
Decay-based and Population-based methods did not have a significant
influence on the number of agents that left the system or cloned themselves. The
results obtained are similar to the results obtained with the Population-based
mechanism that did not consider the link changes (see Figure 12 (Left)).

Figure 14 (Right) shows the number of changes in the structural relations be-
tween agents. The number of structural changes increased when both mechanisms
were combined. This is due to the fact that the system achieved a greater degree
of adaptation that included not only the structural links, but also the population of
the system; therefore, a change in the service demand required a higher number
of structural changes.

Table 9 shows network properties in different snapshots when agents use Decay-based
and Population-based mechanisms for self-organization. As in previous
scenarios, the network homophily decreases as the system adapts itself to the ser-
vice demand. The clustering coefficient does not decrease since the combina-
tion of Decay-based and Population-based mechanisms generates less
changes in the agents links than only Decay-based.

Taking into account the results of the different tests, we can conclude that the
inclusion of self-organization mechanisms considerably improves the system per-

43

Figure 17: Improvement in the communication load when Decay-based and
Population-based mechanisms are combined.

Communication load improvement
sn = 1 sn = 5 sn = 50 sn = 51 sn = 55 sn = 99

z = 100 0.46 ± 0.12 0.58 ± 0.08 0.66 ± 0.02 -0.30 ± 0.2 0.29 ± 0.15 0.61 ± 0.03
Links + Agz = 100 0.42 ± 0.09 0.54 ± 0.04 0.64 ± 0.06 -0.54 ± 0.27 0.51 ± 0.07 0.66 ± 0.05

Table 3: Communication load improvement in different snapshots sn when agents include
Decay-based and Population-based mechanisms in the discovery process.

of an interval is lower when both mechanisms are combined. The system is able
to recover from this situation quickly and achieve a successful rate near the 95%.
This success rate is maintained during all the interval. The plunge in the intervals
is more significant when both self-organization mechanisms are combined due
to the system is more adapted to the service demand. Note that a better system
adaptation reduces the variability of the obtained results, mainly when the changes
in the service demand are significant (see Table 2).

The results related to the communication load in the system (see Figure 17) are
similar to the results commented in Figures 16 and ??. In general, the improve-
ment of the communication load when there is a change in the service demand
is reduced. However, the system is able to recover and improve the communica-
tion cost significantly, around 50%. Note, that the combination of both strategies
reduces the variability (see Table 3).

Regarding the structural self-organization cost, the combination of both Decay-based
and Population-based methods does not have a significant influence in the
number of agents that leave the system or clone themselves. The obtained results
are similar to the results obtained with the Population-based mechanism
that does not consider the link changes (see Figure 15).

The number of changes in the structural relations between agents is shown in

39

Structural changes
sn = 1 sn = 5 sn = 50 sn = 51 sn = 55 sn = 99

z = 100 158.8 ± 32.66 57.0 ± 30.03 20.6 ± 26.19 339.4 ± 74.57 90.2 ± 46.27 87.8 ± 33.75
Links + Agz = 100 46.2 ± 19.53 42.2 ± 23.23 95.4 ± 32.55 815.2 ± 144.02 129.4 ± 45.59 87.6 ± 114.41

Table 4: Number of rewired links in different sn when agents include Decay-based and
Population-based mechanisms in the discovery process.

Figure ??. The number of structural changes increases when both mechanisms
are combined. This is due to the fact that the system achieves a greater degree of
adaptation that includes not only the structural links, but also the population of
the system, therefore, a change in the service demand requires a higher number of
structural changes.

4.4. Discussion
Taking into account the results of the different tests, we can conclude that the

inclusion of self-organization mechanisms improves considerably the system per-
formance. Particularly, in the case of service discovery, self-organization mecha-
nisms introduce an improvement in the percentage of successful searches as well
as in the average number of steps required to locate a suitable provider agent.
Moreover, the communication load is considerably reduced.

The Decay-basedmechanism offers a more reactive self-organization. There-
fore, the latency or time for adaptation is reduced considerably with respect RL-based
mechanism. However, this reactive behavior implies an adaptive cost in the num-
ber of structural relations changed. The number of changes in the structural re-
lationships between agents can be regulated through the displacement parameter
z. The experiments show that with z = 100, the best results are obtained. How-
ever, in systems where the structural changes are expensive the configuration with
z = 300 reduces the structural changes and also offers good results.

We compared the proposed Decay-based mechanism with a RL-based
mechanism. The best configuration of Decay-based mechanism offer better
results than the best configuration of RL-based mechanism. RL-based mech-
anism reduces the number of structural changes, and therefore, takes more time
for adaptation. This mechanism is not suitable for highly-dynamic environments.

The Population-basedmechanism is also an appropriate for self-organization
in distributed environment. The degree of adaptation obtained with this mech-
anism is higher than with Decay-based mechanism. This fact makes that
changes in the service demand have more significant effects. However, this mech-
anism also offers a small latency to recover from changes in the service demand.

40

Table 8: (Up) Communication load improvement, and (Down) Number of structural changes in
different snapshots sn when service demand changes and agents include Decay-based and
Population-based mechanisms in the discovery process.

Network properties
prop. sn=1 sn=50 sn=99

Links+ Ag CH 0.35 0.2 0.2
C 0.003 0.002 0.003
k 2.52 3.19 3.2
D 18.0 14.0 12
p 8.11 6.37 5.62

Table 9: Network properties in different snapshots sn when agents use Decay-based and
Population-based mechanisms and the service demand changes. The network properties
are: CH choice homophily, C clustering coefficient, k average degree of connection, D diameter,
and p average path length.

44

formance. Specifically, in the case of service discovery, self-organization mecha-
nisms introduce an improvement in the percentage of successful searches as well
as in the average number of steps required to locate a suitable provider agent. The
communication load is also considerably reduced.

The Decay-basedmechanism offers a more reactive self-organization. There-
fore, the latency or time for adaptation is reduced considerably with respect RL-based
mechanism. However, this reactive behavior implies an higher cost for adaptation,
reflected in the number of modified structural relations. The number of changes
in the structural relations between agents can be regulated through the displace-
ment parameter z. The experiments show that the best results are obtained with
z = 100. However, in systems where the structural changes are expensive, the
configuration with z = 300 reduces the structural changes and also offers good
results.

We compared the proposed Decay-based mechanism with a RL-based
mechanism. The best configuration of Decay-based mechanism offers better
results than the best configuration of RL-based mechanism. RL-based mech-
anism reduces the number of structural changes, and, therefore, it needs more time
for adaptation. This mechanism is not suitable for highly-dynamic environments.

The Population-basedmechanism is also appropriate for self-organization
in distributed environments. The degree of adaptation obtained with this mecha-
nism is higher than with Decay-based mechanism. This causes changes in the
service demand to have more significant effects. However, this mechanism also
offers a small latency to recover from changes in the service demand.

The combination of Decay-based and Population-basedmechanisms
offers a more dynamic system adaptation. This combination improves previous
mechanisms in the percentage of successful searches, the average path, and com-
munication load. The latency to adapt to the new service demand is also reduced
as well as the variability in the obtained results. The improvement introduced with
the combination of both mechanisms is more significant when drastic changes in
the service demand are produced and agents have outdated information in their
internal states.

7. Conclusions

Environmental conditions in open, service-oriented systems can change and
the systems should be able to adapt to new circumstances in a decentralized way.
The majority of self-organization proposals only consider changes in the struc-
tural relations of the systems and do not consider population adaptation or the

45

combination of both.
In the presented system, we have proposed a model for self-organization. In

this model, each agent is able to reason about when it is appropriate to apply
self-organization actions based on its local view of the environment. Agents con-
sider not only the adaptation of the structural links, but also the adaptation of the
population. The self-organization of the links is based on an estimation of their
utility, by analyzing how many times an agent uses each link to forward queries.
The links that are not being used are replaced with new structural relations with
acquaintances. The acquaintances are not randomly chosen, as it occurs in the
majority of proposals present in the literature. The acquaintances are established
as a result of the service discovery activity, considering which are the roles that
are being demanded in that moment. Regarding to the self-organization of the
population, the proposed mechanism analyses whether the services provided by
one agent are demanded in the system or not.

We evaluated the proposed approach through a set of experiments taking into
account the effects of the inclusion of self-organization mechanisms of the average
path length, the percentage of successful searches, the improvement in communi-
cations and the time to recover from changes. The combination of Decay-based
and Population-based mechanisms improved the system performance by
reducing the latency to achieve a complete adaptation of the system, offering a
more reactive behavior and a lower variability in the results in highly dynamic
environments.

As future work, we plan to consider costs associated to self-organization ac-
tions such as rewiring links or cloning in order to analyze how this fact influ-
ences in the number of self-organization actions. In this work we have assumed
that agents have an unbounded number of resources, therefore, they always have
enough computational resources to attend and analyze all the queries received
during the service discovery. However, real application scenarios can impose
constraints to the resources of agents. Moreover, we plan to consider other self-
organization actions such as organizational roles changes in the system (i.e., agents
that acquire most demanded roles instead of leaving the system) in order to adapt
their functionality to the service demand.

References

[1] S. Abdallah, V. Lesser, Multiagent reinforcement learning and self-
organization in a network of agents, in: Proceedings of the Sixth Interna-

46

tional Joint Conference on Autonomous Agents and Multi-Agent Systems,
IFAAMAS, 2007, pp. 172–179.

[2] Adamic, Zipf’s law and the internet, Glottometrics 3 (2002) 143–150.

[3] M. Aquin, S. Elahi, E. Motta, Personal monitoring of web information
exchange: Towards web lifelogging, in: Proceedings of the WebSci10,
Raleigh, NC: US, 2010, pp. 1–7.

[4] B. Biskupski, J. Dowling, J. Sacha, Properties and mechanisms of self-
organizing manet and p2p systems, ACM Trans. Auton. Adapt. Syst. 2
(2007) 1–34.

[5] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.U. Hwang, Complex net-
works: Structure and dynamics, Physics Reports 424 (2006) 175 – 308.

[6] M. Bowling, M. Veloso, Multiagent learning using a variable learning rate,
Artificial Intelligence 136 (2002) 215–250.

[7] R. Buyya, Market-oriented cloud computing: Vision, hype, and reality of de-
livering computing as the 5th utility, in: Proceedings of the 9th IEEE/ACM
International Symposium on Cluster Computing and the Grid, IEEE Com-
puter Society, 2009, pp. 5 –13.

[8] B.F. Cooper, H. Garcia-Molina, Ad hoc, self-supervising peer-to-peer search
networks, ACM Trans. Inf. Syst. 23 (2005) 169–200.

[9] A. Crespo, H. Garcia-Molina, Routing Indices For Peer-to-Peer Systems, in:
Proceedings of the 22nd International Conference on Distributed Computing
Systems (ICDCS’02), IEEE Computer Society, 2002, p. 23.

[10] E. Del Val, M. Rebollo, V. Botti, Decentralized Service Management based
on Homophily for Self-Adaptive SOMAS, in: IEEE 8th International Con-
ference on Services Computing, IEEE Computer Society, 2011, pp. 755–
756.

[11] E. Del Val, M. Rebollo, V. Botti, Enhancing Decentralized Service Discov-
ery in Open Service-Oriented Multi-Agent Systems, Journal of Autonomous
Agents and Multi-Agent Systems (2012) 1–30.

47

[12] G. Di Caro, F. Ducatelle, L.M. Gambardella, Anthocnet: An adaptive nature-
inspired algorithm for routing in mobile ad hoc networks, European Trans-
actions On Telecommunications 16 (2005) 443–455.

[13] G. Di Marzo Serugendo, M.P. Gleizes, A. Karageorgos, Self-organization in
multi-agent systems, Knowl. Eng. Rev. (2005) 165–189.

[14] J. Gabbai, H. Yin, W. Wright, N. Allinson, Self-organization, emergence
and multi-agent systems, in: International Conference on Neural Networks
and Brain, volume 3, IEEE Computational Intelligence Society, 2005, pp.
1858–1863.

[15] M.E. Gaston, M. DesJardins, Agent-organized networks for multi-agent pro-
duction and exchange, in: Proceedings of the 20th National Conference on
Artificial Intelligence - Volume 1, AAAI Press, 2005, pp. 77–82.

[16] A. Giagkos, M.S. Wilson, Beeip a swarm intelligence based routing for
wireless ad hoc networks, Information Sciences 265 (2014) 23 – 35.

[17] C. Gkantsidis, M. Mihail, A. Saberi, Random walks in peer-to-peer net-
works: Algorithms and evaluation, Performance Evaluation 63 (2006) 241–
263.

[18] P. Haase, R. Siebes, F. van Harmelen, Peer selection in peer-to-peer networks
with semantic topologies, in: Proceedings of the International Conference
on Semantics in a Networked World (ICNSW’04), volume 3226 of LNCS,
Springer Verlag, 2004, pp. 108–125.

[19] P.N. Howard, L. Rainee, S. Jones, Days and nights on the internet, American
Behavioural Scientist 45 (2001) 383–404.

[20] B.A. Huberman, L.A. Adamic, The Nature of Markets in the WWW, Tech-
nical Report, 1999.

[21] E. Kaddoum, C. Raibulet, J.P. Georgé, G. Picard, M.P. Gleizes, Criteria for
the evaluation of self-* systems, in: Proceedings of the 2010 ICSE Workshop
on Software Engineering for Adaptive and Self-Managing Systems, ACM
Press, 2010, pp. 29–38.

[22] S. Kamboj, K.S. Decker, Organizational self-design in semi-dynamic en-
vironments, in: Proceedings of the 6th International Conference on Au-
tonomous Agents and Multiagent Systems, ACM, 2007, pp. 335 – 337.

48

[23] J. Kleinberg, Complex networks and decentralized search algorithms, in:
Proceedings of the International Congress of Mathematicians (ICM), Euro-
pean Mathematical Society, 2006, pp. 1–26.

[24] R. Kota, N. Gibbins, N.R. Jennings, Self-organising agent organisations, in:
Proceedings of the 8th International Conference on Autonomous Agents and
Multiagent Systems, IFAAMAS, 2009, pp. 797–804.

[25] R. Kota, N. Gibbins, N.R. Jennings, Decentralized approaches for self-
adaptation in agent organizations, ACM Trans. Auton. Adapt. Syst. 7 (2012)
1:1–1:28.

[26] P.F. Lazarsfeld, R.K. Merton, Friendship as a social process: A substan-
tive and methodological analysis, Freedom and Control in Modern Society
(1954) 18–66.

[27] P. Leito, Towards self-organized service-oriented multi-agent systems,
in: Service Orientation in Holonic and Multi Agent Manufacturing and
Robotics, volume 472 of Studies in Computational Intelligence, Springer
Berlin Heidelberg, 2013, pp. 41–56.

[28] A. Loser, S. Staab, C. Tempich, Semantic social overlay networks, Selected
Areas in Communications, IEEE Journal on 25 (2007) 5–14.

[29] J.P. Mano, C. Bourjot, G.A. Lopardo, P. Glize, Bio-inspired mechanisms for
artificial self-organised systems, Informatica (Slovenia) (2006) 55–62.

[30] P. Maymounkov, D. Mazières, Kademlia: A peer-to-peer information sys-
tem based on the xor metric, in: Revised Papers from the First International
Workshop on Peer-to-Peer Systems, IPTPS ’01, Springer-Verlag, London,
UK, UK, 2002, pp. 53–65.

[31] W. Nejdl, M. Wolpers, W. Siberski, C. Schmitz, M. Schlosser, I. Brunkhorst,
A. Lser, Super-peer-based routing and clustering strategies for RDF-based
peer-to-peer networks, in: Proceedings of the 12th International World Wide
Web Conference, 2003, pp. 536–543.

[32] M.P. Papazoglou, P. Traverso, S. Dustdar, F. Leymann, Service-oriented
computing: State of the art and research challenges, Computer 40 (2007)
38–45.

49

[33] M.P. Papazoglou, P. Traverso, S. Dustdar, F. Leymann, Service-Oriented
computing: A research roadmap, International Journal of Cooperative In-
formation Systems 17 (2008) 223–255.

[34] L. Peshkin, V. Savova, Reinforcement learning for adaptive routing, in: Pro-
ceedings of the International Joint Conference on Neural Networks, vol-
ume 2, IEEE Computational Intelligence Society, 2002, pp. 1825 –11830.

[35] C. Raibulet, L. Masciadri, Evaluation of dynamic adaptivity through met-
rics: an achievable target?, in: Proceedings of the European Conference on
Software Architecture, IEEE, 2009, pp. 341 –3344.

[36] M. Ripeanu, Peer-to-peer architecture case study: Gnutella network, P2P
(2001).

[37] R. Rodrigues, P. Druschel, Peer-to-peer systems, Commun. ACM 53 (2010)
72–82.

[38] M. Saleem, G.A.D. Caro, M. Farooq, Swarm intelligence based routing pro-
tocol for wireless sensor networks: Survey and future directions, Informa-
tion Sciences 181 (2011) 4597 – 4624.

[39] Ö. Simsek, D. Jensen, Decentralized search in networks using homophily
and degree disparity, in: Proceedings of the 19th International Joint Confer-
ence on Artificial Intelligence, AAAI Press/International Joint Conferences
on Artificial Intelligence, 2005, pp. 304–310.

[40] I. Stoica, R. Morris, D. Karger, F. Kaashoek, H. Balakrishnan, Chord: A
Scalable Peer-To-Peer Lookup Service for Internet Applications, Computer
Communication Review 31 (2001) 149–160.

[41] C. Tempich, S. Staab, A. Wranik, REMINDIN’: Semantic Query Routing in
Peer to Peer Networks Based on Social Metaphors, in: Proceedings of the
WWW2004, pp. 640–649.

[42] P. Velagapudi, O. Prokopyev, K. Sycara, P. Scerri, Analyzing the perfor-
mance of randomized information sharing, in: Proceedings of The 8th In-
ternational Conference on Autonomous Agents and Multiagent Systems -
Volume 2, AAMAS ’09, IFAAMAS, 2009, pp. 821–828.

50

[43] G.A. Vouros, Information searching and sharing in large-scale dynamic net-
works, in: Proceedings of the 6th International Joint Conference on Au-
tonomous Agents and Multiagent Systems, AAMAS ’07, ACM, 2007, pp.
49:1–49:8.

[44] D. Watts, P. Dodds, M. Newman, Identity and search in social networks,
Science 296 (2002) 1302 – 1305.

[45] D. Weyns, M. Georgeff, Self-adaptation using multiagent systems, IEEE
Software 27 (2010) 86 –891.

[46] Y. Xu, M. Lewis, K. Sycara, P. Scerri, Information sharing in large scale
teams, in: AAMAS04 Workshop on challenges in coordination of large scale
multiagent systems.

[47] B. Yang, H. Garcia-Molina, Efficient search in peer-to-peer networks, in:
Proceedings of the International Conference on Distributed Computing Sys-
tems (ICDCS), 2002.

[48] D. Ye, M. Zhang, D. Sutanto, Self-organization in an agent network: A
mechanism and a potential application, Decision Support Systems 53 (2012)
406 – 417.

[49] B. Yu, M.P. Singh, Searching social networks, in: Proceedings of the Sec-
ond International Joint Conference on Autonomous Agents and Multiagent
Systems, AAMAS ’03, ACM, 2003, pp. 65–72.

[50] H. Zhang, B. Croft, B. Levine, V. Lesser, A Multi-agent Approach for Peer-
to-Peer based Information Retrieval System, in: Proceedings of 3rd Inter-
national Joint Conference on Autonomous Agents and MultiAgent Systems,
2004, pp. 456–464.

[51] H. Zhang, V. Lesser, Multi-Agent Based Peer-to-Peer Information Retrieval
Systems With Concurrent Search Sessions, in: Proceedings of the Fifth In-
ternational Joint Conference on Autonomous Agents and Multiagent Sys-
tems, ACM, 2006, pp. 305–312.

51

