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Abstract

This work presents an approach to model how the activity in social media of the

citizens reflects the activity in the city. The proposal includes a gravitational

model that deforms the surface of the city based on the intensity of the activity

in different zones. The information is extracted from geolocated tweets (n =

1.48 × 106). Furthermore, this activity affects how people move in a city. The

path a user follows is calculated using the geolocation of the tweets that he or

she publishes along the day. Several models are evaluated and compared using

the Hausdorf’s distance (dH). The combination of gravitational potential with

attraction to the destination points provides the best results, with dH = 1176

against the Manhattan (dH = 1203) or the geodesic (dH = 1417) alternatives.

Finally, the analysis is repeated with the data segmented by gender (n=2,826

paths, men=1,910, women=916). The results validate (p=0.000334) the studies

that affirm that men travel longer distances (dM = 4.73 km, αM = 26.1◦) with

rectilinear trajectories, whereas women have shorter and more angled paths

(dW = 4.5 km, αW = 32.2◦), obtaining pvalues p=0.0014 for the significance in

the differences in path lengths and p=0.006 in the angles.
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1. Introduction

In last years, the analysis of people mobility is an area of research that has

been reinforced by the availability of a huge volume of geo-tagged and accessible

information. Due to the use of mobile phones, a large amount of data related

to mobility is obtained through the use of different media: WiFi connections,5

communications between individuals by text messages, phone calls, or social

networks. The availability of such amount of data has led to the analysis of

mobility patterns of individuals at an unprecedented scale regarding the area

covered by the trajectories as well as the number of individuals involved in the

studies [1].10

Researchers have applied the analysis of human mobility to a wide range

of contexts. For instance, understanding individuals’ mobility facilitates the

detection of frequent activities [2], and abnormal or exceptional events [3, 4],

the estimation of future movements [5, 6], migratory flows, urban planning

[7, 8, 9] or traffic forecast [10]. One of the challenges in the analysis of human15

mobility is the proposal of models that can determine individual trajectories at a

local scale. There are many research efforts on proposing mobility models based

on new tracking technologies such as mobile phones [11] or GPS devices that

provide low-resolution data records [12]. However, these data sources involve

privacy concerns and data access restrictions [13].20

Recently, as an alternative, large online social systems have been used as

providers of useful data about human dynamics for mobility models. Specifically,

Twitter allows users to geotag their publications with their current location

providing high position resolution down to 10 meters.

There are studies that state that Twitter is a reliable source for studying25

human mobility patterns [14] despite some open issues, such as (i) potential

sampling bias due to the communication modality; (ii) bias with respect to the

amount of located tweets; (iii) those related to the profile of people who activate

their location, and (iv) certain types of events in which users are more likely to

share their location. The majority of the studies that analyze human mobility30
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focus on urban and inter-city trajectories/movements without tracing the points

that an individual follows through a path. Moreover, many of the proposals

solely analyze human mobility from an analytical perspective. Mobility is a

complex phenomenon, and therefore not only the individual but also his or

her demographic characteristics (i.e., age, gender or other contexts) must be35

considered [15].

There are studies that evidence a difference in the mobility patterns be-

tween men and women. An additional objective of this work is to contrast this

hypothesis with empirical data provided from social networks. Furthermore,

having these differences into account the mobility necessities of each collective40

can be considered in a fairer way.

The studies that deal with the analysis of gendered mobility are only based

on qualitative data [16, 17, 18, 19]. For instance, Blumen et al. [20] analyzed

the trajectories of men and women in work trips. The results show that there

are significant differences between genders. Basaric et al. [21] and Maffiiny et al.45

[22] studied the type of transport used by genre. The results throw a difference

in the media: a higher use of private cars for men and public transport and

walking for women. Although this factor has not been studied explicitly in

this work, the obtained results are coherent with the mentioned studies. As

a consequence, the gender perspective affects the sustainability of transport in50

the cities, which has been considered by Hanson [23].

The interest of this research is related with the fact that mobility plays an

important role in the population’s quality of life and urban dispersal. Problems

like accessibility to the center of the town, quality of transport service and envi-

ronmental issues may be addressed with a proper analysis of mobility patterns55

[24].

In this paper, we present a gravitational potential model that shows how the

activity in social networks is a reflection of the activity in a city. This model

is represented as a contour map that shows how the population of a city is at-

tracted to each point in the city map by means of a gravitational–like force. The60

initial hypothesis of this work is that these potential lines influence how people
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tend to move along a city. To validate this hypothesis, we propose two strategies

for movement description (i.e., the attraction strategy and the geodesic strat-

egy), based on our gravitational model, considering users’ geotagged activity in

Twitter. Finally, we performed a set of experiments with more than one million65

geotagged tweets to empirically validate the strategies.

A second experiment is focused explicitly on detecting differences in mobility

taking into account the gender of the subjects under study. This experiment

tries to validate the studies that state that men and women move differently in

daily trips [18, 19, 20].70

The rest of the paper is organized as follows. Section 2 presents previous

works that analyze human mobility using different data and models. Section

3 presents the gravitational potential approach to model the activity of a city.

Section 4 describes the proposed strategies based on the previous model to

estimate a path followed by a user. Section 5 evaluates the strategies for path75

estimation using different methods for pre-processing the real geo-located data

from Twitter. This section also analyzes path differences by gender. Finally,

conclusions and future work are presented.

2. Related Work

Obtaining and analyzing information on people’s traces is fundamental to80

understand human mobility and to make strategic decisions about the design

of urban infrastructure or transport systems [25]. Human mobility is a topic

that has attracted the attention of many researchers for years [26, 27, 28, 6,

29]. Researchers in this area have analyzed and proposed theoretical models

that facilitate the description of joint mobility flows using different sources of85

information such as mobile phone calls [30, 31], GPS data [32], and geotagged

information from social networks [33].

A first group of the research proposals are focused on analyzing data from

different sources (i.e., GPS, social media, mobile traces) to understand mobility

behavior. For instance, Lima et al. [34] analyze the GPS traces generated90
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by 526 private cars over an 18-month period and explore how their routing

behavior unfolds in four cities. Other works use the data provided by mobile

phones to extract spatial patterns of mobility within the metropolitan area and

their relationships to neighborhood characteristics [30]. In this line, Gonzalez

et al. [28] also studied the trajectory of anonymized mobile phone traces. The95

authors found that human trajectories tend to show a high degree of temporal

and spatial regularity [35]. Individual’s movements can be determined by a time-

independent characteristic travel distance and a significant probability to return

to locations they visited before. Lee et al. [36] analyze the influence of street

morphology on travel routes in several cities through a metric that captures100

the tendency of these routes to orbit towards or away from the city center.

They proposed a metric called inness that considers the direction, orientation

and length of routes, thus revealing the morphology of connectivity in street

networks, including the distribution of implicit socioeconomic forces that may

inform routing choices.105

The use of mobile or GPS data provides accurate information about users’

movements. However, this information is not always accessible. For this reason,

many studies consider geo-positioned data from social networks as a suitable

source to analyze mobility patterns. Flicker [37], Twitter [38], Brightkite or

Foursquare [39] among others offer the possibility of tracking users’ location110

through the geotagged information contained in the users’ posts as well as un-

derstanding their environmental context. Bejar et al. [40] used Twitter data

to analyze spatiotemporal patterns of users that visit or live in a city. Other

works study the places frequently visited by a user and how these places are

connected [41], or analyze daily movements to identify different areas of the city115

[42]. Other works analyze mobility at international scale [43].

A second group of research proposals try to generalize mobility patterns of

users through mathematical models. One of these models is based on Newton’s

gravity force. The idea of this gravity model was introduced by Zipf in 1946 [26]

to estimate the size of the flow between two areas. The gravity model considers120

that the flow of people traveling between two locations is directly proportional to
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the attraction force based on the population of the source and destination, and

decays as the distance between them increases. This gravity model is static and

requires mobility data to fit its parameters. Several works have used this model

to deal with the problem of describing human mobility patterns [44, 45, 46].125

For instance, Smith et al. [45] identified deprived areas of the city describing

the movement of passengers between transport stations using the gravitational

model.

An alternative model was proposed by Simini et al. [47]. They present a

radiation model that considers human movements as diffusion processes that130

depend on the population distribution over the space. This model is static

and in its original formulation has not parameters to fit, but requires accurate

knowledge of the spatial population distribution.

Stouffer et al. [27] proposed the intervening-opportunities model. The model

states that the number of people going at a given distance is directly propor-135

tional to the number of opportunities at that distance and inversely propor-

tional to the number of intervening opportunities. This model requires accurate

knowledge about the place where it is going to be applied.

Other models study the interplay between the regular trajectories and if they

are random and, therefore, unforeseeable. For instance, Jia et al. [48] state that140

human mobility is mainly attributable to hierarchical and individual preferences.

They implement an agent-based model that considers three main features: (i)

the scaling and hierarchical properties of the clusters with the targets of the

individuals which serve as the underlying spatial structure; (ii) the individual

preferred trajectories that capture the same Levy flight pattern as it is observed145

in the participants; and (iii) the jumping factor, which is the probability that

one person may cancel their regular mobility schedule and explore a random

place. They validated their model using GPS traces of 258 volunteers.

Some works use social relationships to establish a relationship between reg-

ular and random trajectories. Grabowicz et al. [49] propose a model that150

integrates physical locations and social relationships. The part of the model

related to mobility takes into account recurring visits to the same location and
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exploration of new places. Specifically, the model considers that one person per-

forms a first stage action. He or she can travel to a randomly selected location

of a friend with a certain probability. They can also travel to a new location155

considering a distance (i.e., obtained from a distribution of jump lengths) and

a direction (i.e., chosen proportionally to the population density at the target

distance). The model was tested considering datasets from Twitter, Gowalla,

and Brightkite. The model requires four input parameters and the distribution

of jump lengths.160

Table 1 summarizes the previous studies presented in this section, which

frequently suffer from some of the following limitations. First, they are mainly

focused on human collective flows (i.e., people movements from one place to

other) without distinguishing between particular users. They do not consider

either the specific path that a user follows to reach its destination. Therefore,165

inferring more personal mobility models might be useful to come up with more

customized services. Secondly, most works analyze social geolocated data fo-

cusing on the processing of spatiotemporal aspects of the data, but without

taking into account other context-aware aspects like the gender of the users. As

a result, these works do not fully take advantage of social media datasets.170

The work presented in this paper proposes a set of strategies based on a

gravitational potential model that allows us to model how people in a city is

going to move along its surface. This analysis is based on users geotagged

activity in Twitter that fully considers the limitations listed above:

• it takes into account individual user activity, obtained from the locations175

at which they have tweeted,

• we segregate the paths by gender, since there are studies that affirm that

such difference exists and it is significant.
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Author Analysis Scope Model Source Context

Lima [34] Car routes Inter Spatial probability distribu-

tion that bounds the route

selection space within an el-

lipse, (origin and the destina-

tion as focal points)

GPS –

Calabrese

[30]

Trip length Intra n/a Mobile

phone

traces

–

González

[28]

Trajectories n/a Lèvy-Flight (LF) or Trun-

cated Lèvy-Flight (TLF)

Mobile

phone

traces

–

Lee [36] Origin-

destination

pairs

Intra Innessa function of both the

direction and spatial length of

routes

– –

Béjar [40] Individual

events and

the connec-

tions among

them

Intra Leader clustering algorithm Twitter,

Insta-

gram

–

Terroso-

Senz [41]

Personal mo-

bility graphs

hierarchy

Intra Density-based clustering

Complex Event Processing

Mobile

phone

traces,

Twitter

Sila-

Nowicka

[42]

Trajectories

and move-

ment modes

Intra Neural networks GPS
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Author Analysis Scope Model Source Context

Hawelka

[43]

Global

mobility pat-

terns origin-

destination

pairs

Global Mobility rate, radius of gyra-

tion, diversity of destinations,

and inflowoutflow balance

Twitter –

Beiró [44] Human flows

between

pairs of ge-

ographical

nodes

Inter-

city

Gravity model Radiation

model

Flickr –

Smith [45] Passenger

flow patterns

origin-

destination

pairs

Intra-

inter

city

Gravity model Public

transport

system

records

–

Simini [47] Mobility

fluxes

Intra-

inter

city

Radiation model (require as

input only information on the

population distribution)

Census

data

–

Jia [48] Mobility

patterns

Intra-

inter

city

Levy fligth: (i) scaling and

hierarchical properties of the

purpose clusters (ii) the indi-

vidual preferential behaviors

(iii) jumping factor

GPS

traces

–

Grabowicz

[49]

Origin-

destination

pairs

Inter-

city

Travel and Friend (TF)

Model

Twitter,

Gowalla,

Brightkite

Molas [50] Mobility

patterns

Intra-

inter-

city

Gravitational model Twitter,

Census

–
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Author Analysis Scope Model Source Context

Table 1: Overview of mobility approaches.

3. Modelling the activity of a city

In this section, we present a new way of modeling the surface of a city based180

on the idea of the gravitational potential and how a path is defined following this

surface model and considering different strategies (i.e., attraction and geodesic).

3.1. Surface modelling of a city

In this work, we propose a surface of a city model based on the idea of the

gravitational potential. Other approaches use the Newtonian idea of gravity,185

where two objects are attracted as a function of their mass and the distance that

separates them. Unlike those models, we propose to use Einstein’s relativistic

idea, where gravity is defined as a deformation of space-time as a function of the

mass of objects [51]. This general relativity theory is used as an inspiration to

imagine how the activity in a city generates a field that attracts people moving190

through the city to the essential nerve points at any given moment. We can

imagine that the mass of the geolocated tweets in the city deforms its surface

(in this case we are going to leave the dimension of time to one side, only

for the purposes of the metaphor used) creating an irregular plane where the

zones with more gravitational potential are deeper, attracting people who move195

near them. In Figure 1, we can see how this surface would look like in three

dimensions (top) and in a contour map representation (bottom). The novelty of

this representation in contrast to a heat map is that we have the most relevant

points of the city along with information about the pendent around each point.

With this representation, we can determine the attraction of a person towards200

a specific place or area of the map.

In this work, we have used a dataset of tweets, but it should be noted that

any kind of geolocated activity would be representable with this model. A tweet

i generates a deformation caused by its weight Gi(x, y), where x and y are the

10



Figure 1: 3D representation (top) and contour map (bottom) of the gravitational model over

the city of Valencia.

coordinates of a point in the map, that is calculated based on a renormalized,205

bi-dimensional Gaussian distribution centered on the coordinates of the tweet

such that Gi(lat(i), lon(i)) = −1. A tweet i has a gravitational potential value

in its surrounding area defined by Equation 1:

Gi(x, y) = −e−
1
2

(
x−lat(i)

σ

)2
× e−

1
2

(
y−lon(i)

σ

)2
(1)
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where σ represents the area of influence of a tweet, and lon(i) and lat(i) repre-

sent the longitude and latitude of the tweet i.210

The accumulated effect of all the tweets analyzed in the area is the sum

of the gravitational potential of every single tweet. We use the logarithm for

exponential smoothing the values (Equation 2).

G(x, y) = log
∑
i

Gi(x, y) (2)

In the next section, we are going to present some strategies that we have

defined to model paths that people follow when they move along the deformed215

surface of the city, generated by the density of the publications in different areas

of the city.

3.2. Path modelling

The gravitational potential model presented in the last section allows us to

create a surface of the city with force attractions that model how an object (in220

our case of study, people) would move along such surface. We define Su as the

ordered sequence of tweets emitted by a user u (Equation 3).

Su =
〈
i0, i1, . . . in

〉
(3)

A path Pu of a user u is the ordered sequence of the coordinates of the tweets

in Su (Equation 4).

Pu =
〈
(x0, y0), (x1, y1), . . . (xn, yn)

〉
(4)

We consider the point A = (x0, y0) as the origin point of a path and the225

point B = (xn, yn) as the destination point of a path.

A first approach would be to follow a pure gradient descent over G(x, y).

If we imagine a small ball being dropped on a point on the surface, it moves

quickly to its nearest local minimum if there is no other force pushing it. This

strategy would certainly not be valid for predicting the path a person takes in230

a city since this path has a point of origin and (and this is the key) a point of
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destination. For this reason, the mere fact of dropping the ball on the surface

is indeed not enough to achieve the desired goal. Figure 2 shows what would

happen in this case. The path followed by the person we are studying would be

very different from that of our imaginary ball, which would quickly fall down in235

a pit or even leave the map without approaching the target in any case (except

by accident).

For this reason, in this work we propose two strategies based on this grav-

itational potential to model the path that a person follows to go from point

A to point B. These strategies aim to wisely use the information included in240

the gravitational potential to model with as little error as possible the paths

that citizens take, starting from an origin to a destination. These strategies are

called: attraction and geodesic.

3.2.1. Attraction Strategy

This strategy aims to solve the problem of the absence of influence of the245

destination point B = (xn, yn) included in G(x, y). This strategy adds some

weight at the destination point. This modification forces the gradient vectors of

Figure 2: Real path (blue) compared to obtained path (green) when a pure gradient descent is

performed. In this case, the path takes a wrong direction, guided exclusively by the gradient

generated by the tweets.
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the field to point to that destination, although still maintaining the roughness

of the surface that the gravitational model has defined. The attraction strategy

considers that the destination point B has an important weight and, therefore,250

attracts the path Pu towards itself. Equation 5 modifies Equation 1 considering

the weight of the destination point B that depends on an attraction parameter

called Λ. This parameter regulates the attraction that point B generates over

the original gravitational map by introducing a radial gradient field centered on

B. If Λ has a low weight, this means that B has a low influence in the path.255

However, if Λ has a high weight, B has a high influence, and the path becomes

a straight line from point A to B, which is not desired either.

GΛ(x, y) = G(x, y)− Λ
√

(xn − x)2 + (yn − y)2 (5)

The attraction path

PΛ =
〈
(x0, y0), (x1, y1), . . . (xn, yn)

〉
(6)

has the same A and B as initial and final points, and any intermediate point

(xi, yi) is obtained from the application of the gradient defined by GΛ(x, y) to

the previous point (xi−1, yi−1).260

Figure 3 shows the effect of the attraction of point B (red) in the path both

in 3D (top) and 2D (bottom). The vectors represent the gradient direction of

the attraction field generated by all the tweets.

3.2.2. Geodesic Strategy

The geodesic strategy makes a different approach to the solution by looking

for the shortest path in three dimensions that connects two points in a curved

space. We pretend to minimize the length of the path between two points:

D(Pu) =

n−1∑
i=0

di,i+1 (7)

where di,i+1is the Euclidean 3D-distance between two consecutive points in the

path Pu.

di,i+1 =
√

(xi+1 − xi)2 + (yi+1 − yi)2 + (G(xi+1, yi+1)−G(xi, yi))2 (8)
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Since the calculation of the shortest path in a 3D surface is an NP-Hard265

problem, we use a common approach that discretizes the gravitational field into

a grid and applies a graph-based algorithm to find the shortest path [52]. We

consider the vertices of the grid as nodes in the graph. The irregularities of the

Figure 3: (top) 3D representation of the attraction strategy. The destination point B generates

a radial gradient that attracts the walker although it conserves the roughness generated by

the gradient of the tweets. (bottom) The vector field representation of the combined gradient,

along with the path of a walker following the gradient.
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Figure 4: Graph that represents the area under analysis, where a node is a cell of the grid

and the edges are the slopes with adjacent nodes.

surface are the difference of heights between two adjacent vertices. These slopes

are included as weights of the corresponding edges of the graph (see Figure 4).270

The geodesic strategy finds the most straight and flat path between two points

that avoids high slopes. To determine the path with the lowest cost, we use

the Dijkstra’s shortest path algorithm [53]. We denote as PG the shortest path

from A to B.

Figure 5 shows an example of a path generated with the geodesic strategy275

(green path) and the user’s original path (blue path). The points of the path

generated by the geodesic strategy are usually in adjacent level curves (i.e.,

points at a similar height).

4. Materials and Methods

Next, we need to evaluate the strategies we have presented in the previous280

section by comparing them with geolocalized data collected from social net-

works. Since data from social networks are sequences of coordinates we need

to interpret these sequences of coordinates as real paths made by users. These

real paths will be used to compare and evaluate our strategies. To do this, in

this section we have iterated through three methods, which we have evaluated285

through experiments, in order to find the best representation of the real path

from these data. Following is the Experimental Setup and the three methods
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Figure 5: Contour map of the geodesic strategy. The geodesic strategy generates the green

path. The original path is represented in blue color.

mentioned. Finally, an algorithm will be proposed to process the data extracted

from social networks and prepare them for experiments that evaluate geodesic

and attraction strategies.290

The goal of this work is to validate how similar is our generated path for

each strategy with the original path. For the evaluation, we considered the error

between real paths and generated paths using the Haussdorf distance. Finally,

in addition to the analysis of the predicted paths based on the gravitational

potential model, we also study the differences between women and men path295

trajectories.

4.1. Setup

In this block, we describe the steps to retrieve and pre-process the dataset

used in our experiments in order to reproduce them. These steps are: Informa-

tion Retrieval from Twitter and Data Exclusion of redundant and incomplete300

data.
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Figure 6: Distribution of geolocated tweets between 04-Feb-2015 and 26-Feb-2018].

Information Retrieval

The dataset is formed by a set of tweets collected during several years. The

tweets are geolocated in the city of Valencia (Spain) between the dates 04-

Feb-2015 and 26-Feb-2018 [54]. We analyzed a total of 1,483,338 tweets from305

72,717 different users. Figure 6 shows the distribution of tweets over time. The

intervals without tweets represent a drop from the tweet collection server due

to technical problems. However, this does not affect the experiments carried

out, since the biggest time interval that we use in the experiments is a day. The

information that we have retrieved from each tweet is its geolocation, date, user310

identifier, and user name. The rest of the fields that the Twitter API provides

were discarded.

The dataset of tweets is used to extract the sequence of coordinates that

users publish along a day in the city. Each user u has associated a sequence Su

with the tweets that he or she has published. A path Pu is generated based on315

the latitude and longitude where a user published the tweet. These points allow

us to know where a user has been in the city along the day. Linking the dots

with the location of these tweets by straight lines we can generate the path that
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has followed approximately every user. The ”day” time unit has been chosen

for each user to see how he has moved throughout a 24-hour period through the320

city. However, as will be shown below, certain subdivisions of paths have been

made taking into account their shape.

Data Exclusion

For each of these users, we remove the repetitions of consecutive tweets with

the same geolocation. Therefore, always there is a variation from point i to325

point i+ 1 in the path Pu.

For each day, all users who have published at least three tweets are consid-

ered. Finally, paths with less than two points were eliminated, since they do

not provide useful information.

To evaluate the precision between a path generated by one of the proposed330

strategies and a real path, we have used the Hausdorff distance dH(P,Q) [55]:

dH(P,Q) = max{ sup
p∈P

inf
q∈Q

d(p, q), sup
q∈Q

inf
p∈P

d(p, q) }, (9)

where P is the subset of points of a real path and Q is the subset of points of

a path generated by a strategy; d(p, q) is the distance between a point p ∈ P

and a point q ∈ Q; sup represents the supremum and inf the infimum. The

function dH(P,Q) calculates the greatest of all the distances from a point in335

a real path to the closest point in the generated path. The lower value of a

Hausdorff distance, the lower error of the strategy that is predicting the path.

We compared the results of the proposed strategies (i.e., attraction and

geodesic) with a set of baseline methods. We considered the following baseline

strategies:340

• Euclidean distance-based: this method creates a straight-line between the

starting point A and the destination point B.

• Manhattan distance-based: this method proposes that the movements

should be discretized in a grid along axes at right angles onto the coordi-

nate axes.345
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5. Experiments and results

5.1. Experiment 1. Path segmentation.

This experiment tries to fix the problem of predicting a path that has closed

angles in it. When we observe this type of paths, where there is a round trip,

we can assume that it represents two different paths (see Figure 7).350

We evaluate the precision of the proposed strategies (i.e., the distance be-

tween the real path and the path generated by the gravity-based strategies and

the baseline strategies). To solve the problem mentioned above of round-trip

paths, we first proceed with a path segmentation process.

Segmentation is the process of dividing a movement trajectory into sub-355

trajectories, called segments, where each segment fulfills certain criteria [56]. In

this scenario, paths that contain a transition between three points that form a

closed angle were divided in two, creating two segments.

Let’s consider

Pu =
〈
(x0, y0), . . . , (xi−1, yi−1), (xi, yi), (xi+1, yi+1), . . . , (xn, yn)

〉
as a path which has a closed angle α (α < π

2 ) at point i. Therefore, path Pu

should be split into two segments Pu1
= 〈(x0, y0), . . . , (xi−1, yi−1), (xi, yi)〉 and360

Pu2
= 〈(xi, yi), (xi+1, yi+1), . . . , (xn, yn)〉 (see Figure 7). The i point that joins

two segments a and b can be automatically detected when arccos( ab
|a||b| ) <

π
2 .

Figure 7 shows an example of a sequence of temporarily ordered geo-located

tweets generated by a user during a day. Points 2, 3, and 4 form a closed angle.

Therefore, we split the path Pu = 〈0, 1, 2, 3, 4, 5, 6〉 into two paths. The first365

path is composed of points Pu1 = 〈0, 1, 2, 3〉 and the second path is composed of

Pu2
= 〈3, 4, 5, 6〉. Notice how both resulting paths share the point that formed

the angle.

Based on the tweets dataset and considering the previous restriction, 6,972

real paths were generated. Most of these paths (nearly 97%) are three or four370

points long. Table 2 compares the total and average length of the paths grouped

by their number of steps. Figure 8 shows the length of paths in kilometers. On
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(x0, y0)

(xn, yn)

(xi, yi)

(xi+1, yi+1)

(xi�1, yi�1)

a

b↵

Figure 7: An example of path with a closed angle that is split into two paths.

the whole, 57% of path lengths consist of a few kilometers (i.e., between 0.5 to

4 km).

Path Length 3 4 5 6 7 8

# Paths 5,876 879 162 43 9 6

Percentage 84.24% 12.60% 2.32% 0.62% 0.13% 0.09%

Average (km) 4.73 5.66 6.18 4.38 10.66 3.83

Table 2: Analysis of real paths generated.

In Table 3, it can be observed that the Euclidean strategy obtains good375

results (i.e., a low value of Hausdorff metric) compared to any of the other

strategies. In the attraction strategy, the best results occur when the attraction

factor Λ is very high, generating almost a straight line at one step. This result

could correspond to the linearity of the real paths. As paths are very short, the

straight line is always prevailing.380

To overcome this weakness, we also evaluate the precision of the strategies

grouping paths by their minimum length. Table 4 shows the average Hausdorff

distance (dH(X,Y )) obtained by grouping these paths by minimum length.

By considering the restriction of the minimum number of points for a path,

the number of paths generated in each case decreases drastically. In the same385
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Figure 8: Distribution of number of paths over distances in kilometers.

Strategies dH(X,Y)

Euclidean 683.2

Manhattan 1,235.5

Attraction 1,285.9

Geodesic 1,380.8

Table 3: Hausdorff values obtained with each strategy using the path segmentation process.

way, Hausdorff values increase a little, although it is not determinant. This

result comes from the fact that, possibly, paths of 3 or 4 points were the ones

that most tended to be a straight line. By removing those paths, the ones that

remained were more complex, generating a higher average of Hausdorff values.

5.2. Experiment 2. Segmentation and reassembly of paths.390

In this experiment, we evaluate the precision of the proposed strategies (i.e.,

the distance between the real path and the path generated by the strategies).

The difference with the previous experiment is that in this scenario, to generate
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Minimum Path Length 3 4 5 6 7

# paths 6,972 1,096 218 55 13

Euclidean 683.2 970.8 1,099.5 1,008.7 1,619

Manhattan 1,235.5 1,393.4 1,378.6 1,135.4 1,852.9

Geodesic 1,380.8 1,557.9 1,603.4 1,390.7 1,835.4

Attraction

(best Λ parameter)

1.285,9

(400)

1.467,3

(300)

1.456,6

(300)

1.273,2

(300)

2.011

(300)

Table 4: Hausdorff values grouping paths by minimum length using the path segmentation

process.

more realistic paths, we add a second stage that reassembles the path segments

after making a model for each of the segments that have been split. Specifically,395

first we split the sequence of points if the angle of three consecutive points is

less than 90 degrees (π2 ). Then, we model each part of the original path using

the proposed strategies. Finally, for the evaluation, we reassembly the original

path (i.e., without splitting). In this way, all the tweets that a user has made

during a day are part of the path.400

Figure 9 illustrates an example of this process for building and comparing

paths generated by the proposed strategies and the real paths. The original path

Pu = 〈0, 1, 2, 3, 4, 5, 6, 7〉 is split into three segments at the time of prediction:

Pu1
= 〈0, 1, 2, 3〉, Pu2

= 〈3, 4, 5, 6〉 and Pu3
= 〈6, 7〉. Then, the predictions of

these three paths are made separately. These predictions are reconstructed from405

the points of separation 〈3〉 and 〈6〉 as well as the original path, returning to

Pu = 〈0, 1, 2, 3, 3, 4, 5, 6, 7〉. The original reassembled path is then compared to

the path reconstructed using the proposed strategies and the process described

above.

The average Hausdorff distance obtained with the proposed strategies and410

considering the reassembling process described above shows that the Euclidean

strategy obtained much better values than the rest of the strategies (see Table 5).

The values obtained are still not as good as expected. The deviation appears
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because it is necessary to maintain many two-point paths to guarantee the

reassembly of paths. This approach is not a realistic one at the time of the415

prediction since there is no better predictor than the straight line. This effect

is accentuated by the fact that 83.2% of paths are two-point length ones.

Figure 9: Example of an original path

〈0, 1, 2, 3, 4, 5, 6, 7〉 divided into three par-

tial paths for the prediction: 〈0, 1, 2, 3〉,

〈3, 4, 5, 6〉 and 〈6, 7〉.

Strategy dH(X,Y)

Euclidean 164.2

Manhattan 1,167.4

Attraction 1,037.2

Geodesic 1,298.8

Table 5: Hausdorff values obtained with

each strategy using the split and reassem-

bly process.

5.3. Experiment 3. Realistic paths.

Previous experiments have led to the conclusion that users’ tweets are not420

enough information for the generation of the original paths that they have done

[57]. Joining the geo-located tweets with straight lines is merely wrong, it does

not represent reality. To deal with this problem, we decided to replace the way

in which two consecutive points are joined.

Instead of using a straight line, a more detailed path is used. The path425

between two points is generated by a route planning service, which is a much

more realistic approach to generating paths from consecutive coordinates. This

generator ignores factors such as bottlenecks, preferences, and others that the

model tries to predict, so it gives a good starting point. We used a server

with an instance of Project OSRM [58] to generate realistic paths that follow430
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Figure 10: (Left) Example of a path generated considering only the information of tweets.

(Right) Example of a path generated considering the information of tweets and information

from the OSRM Service.

the directions and streets that the city has. In this way, the original paths

are replaced by more detailed ones. These new realistic paths share the same

intermediate points that Pu has, but include much more points between the

original ones which define trajectories that are feasible paths through the streets

of a city, taking into account the layout of streets and their directions. Figure 10435

(Left) shows a path generated by tweets joined with straight lines, as previously

done, while Figure 10 (Right) shows a path generated by OSRM data using

tweets as intermediate points.

Creating these realistic paths as the set of paths to be compared to the

paths that our strategies modeled gives us a dataset with better path lengths,440

where there are fewer short length paths and their distribution is much more

regular, most focusing on length 26 and away from straight line paths (Figure

11). Results of the Hausdorff distance between these realistic paths and the four

strategies we are comparing in this paper (see Table 6) show that the attraction

model obtains better results than the other strategies.445

5.4. Algorithm

The previously presented methods have been combined in the form of an

algorithm to prepare the data to be compared with the gravitational potential

proposal (both the attraction strategy and the geodesic strategy) in order to

generate a model of the movements of users in a city following our gravitational450

approach. This algorithm is shown in Algorithm 1.
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Figure 11: Distribution of realistic paths lengths after OSRM processing.

After applying this algorithm to the original data we are ready to use it to

compare with the model presented in this work.

5.4.1. Parameter tuning

From the tests of previous subsections emerged the best strategy to model455

paths, which is the strategy of attraction with realistic paths.

Next, we performed more tests to determine the best attraction parameter

(Λ). It is interesting to analyze the number of paths that do not reach their

Strategy dH(X,Y)

Euclidean 1,185.1

Manhattan 1,203.9

Geodesic 1,417.9

Attraction 1,176.7 (Λ = 1, 000)

Table 6: Hausdorff values obtained with each strategy considering realistic paths.
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Result: A set of points that represent the movement of a user in a city.

1. Convert list of tweets to paths: Su → Pu

2. Segmentation: Pu → 〈Pu1 , Pu2 , . . . , Pun〉

3. Adjust each segment to city layout (OSRM): Pui → PRi

4. Reassembly: PR = PR1
+ PR2

+ . . .+ PRn

Algorithm 1: Adjust tweets to city movements

destination with Λ = 0: 6,675 out of 6,972. This failure happens because

the paths fall into local minimums that they cannot leave because they obey460

the gradients of the model. However, this number decreases as the attraction

parameter increases (see Table 7).

When calculating metrics with different attraction parameters, a decrease

in the number of failed paths can be observed as well as the decreasing of the

Hausdorff average distance. The best result comes at the inflection point where465

almost all paths reach the target, as shown in Table 7. An attraction factor of

40 generates all but two paths successfully. It is interesting to see that, if we

increase too much the value of the attraction parameter, the error would grow

a little, even though all paths are still generated correctly. This effect is related

to the fact that, if the factor is extremely large, the paths generated would be470

Λ -10 1 10 20 30 40

dH 5,704.5 2,907.1 1,561.2 1,286.5 1,212.5 1,197.5

Failed 6,169 3,777 990 137 16 2

Λ 50 100 500 1000 2000 5000

dH 1,201.8 1,210.9 1,203.9 1,202.8 1,202.5 1,202.8

Failed 0 0 0 0 0 0

Table 7: Haussdorf distance and number of failed paths considering different values for the

attraction parameter for paths generated with the gravitational model and the attraction

strategy .
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straight lines that would not conform to the real path.

Finally, Figure 12 shows examples of paths generated using the attraction

strategy with this Λ value compared to the real path.

5.5. Gender analysis

The Twitter dataset used in the experiments allows us to classify and analyze475

paths by gender. For the classification of paths by gender, profile information

was taken from users. As the structure of a tweet does not provide gender

information, we considered the profile name of the users that generated a geo-

tagged tweet. The name of each user account was compared with a list of names

and genders taken from the GenderReader project [59]. This file provides an480

international list of names, with their most likely associated gender.

However, not all users publish their real name when creating a Twitter ac-

count. Therefore, gender information could not be obtained from all users. Of

the total number of previously real paths generated (i.e., 6,972 paths) only 2,826

could be classified (40%). Of those paths, 1,910 paths (27%) were classified as485

paths traveled by men and 916 by women (13%).

First, we analyzed whether there are differences between paths considering

the users’ gender. Figure 13 shows the distribution of paths lengths for men and

women, respectively. It can be observed that they have a similar distribution,

with a slight inclination to long paths on the part of the male gender. Men have490

an average of 4.73 km, while women have an average of 4.15 km. The standard

deviation for men is 4.1 km and 3.8 km for women.

Figure 12: Examples of an original path (blue) and a generated path (green).
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Figure 13: Path length distribution for men and women.

When performing the Student’s t-test to analyze the distance distributions

of the paths of these two groups, a p value of 0.000334 is obtained. Therefore,

the null hypothesis (men and women paths are equal) is rejected, and we can495

conclude that there are statistically significant differences between the lengths

of paths of men and women.

We also evaluated the average Hausdorff distance in paths for each gender

using the attraction strategy, which turned out to be the one with the best

results. These distances are different for men and women and the results are500

shown (together with the summary of the rest of the results of this experiment)

in Table 8.

In addition, to better understand the previous results, we calculated the

average sinuosity of paths [60]. This metric is the index that represents how

much the layout of a path deviates from the straight line. The calculation of505
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sinuosity ϑ for path P is given by:

ϑP =
len(P )√

(Px0 + Pxn)
2

+ (Py0 + Pyn)
2

(10)

where len(P) is the length of the path P ; Px0
is the latitude of the starting

point; Pxn is the latitude of the end point; Py0 is the longitude of the starting

point; Pyn is the longitude of the endpoint. The average sinuosity results for

men are 1.168 and for women 1.201. Therefore, women’s paths are more sinuous510

than those of men. The more sinuous a path means that the movement is not

direct from point A to point B, but that there are several stops along the way.

We also analyzed a related metric, the average of the angles of each path.

That is, for each path, three consecutive points were taken, and the angle gen-

erated by the two segments was accumulated. Figure 14 shows an example of515

a path, whose total accumulated angle would be α + β and its average (α+β
2 ).

We calculated this metric for all paths, and it was obtained that the average

angle of men was 26.1 degrees, while that of women was 32.2 degrees.

The result metrics of this experiment provide clues to support the hypotheses

about gender differences in types of urban mobility. They show that men usually520

take longer paths, from narrower angles, but less sinuous. On the other hand,

women take more open angles but with more sinuous paths [18], albeit from

Figure 14: Path angle.
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distance sinuosity angle

men 1253,9 1168 26,1

women 1121,7 1201 32,2

Table 8: Summary of gender analysis results

slightly shorter roads [19].

6. Conclusions

In this paper, we explored urban human mobility using a collection of geo-525

tagged messages from Twitter (n = 1.48×106). Based on this data, we proposed

a gravitational potential model that is represented as a contour map. This map

shows how the population of a city is attracted to each point in the city consid-

ering the slopes around certain points. To navigate this map, we propose two

strategies: the attraction strategy and the geodesic strategy. In order to evaluate530

these strategies we first had to convert the real data extracted from the dataset

to realistics paths to compare with (n=2,826 paths). We proposed a set of meth-

ods, combined in the form of an algorithm, which have also been incrementally

tested one by one. This algorithm has been used to compare our strategies with

baseline strategies (the euclidean and Manhattan strategies). The combination535

of gravitational potential with attraction to the destination points provides the

best results, with dH = 1176 against the Manhattan (dH = 1203) or the geodesic

(dH = 1417) alternatives. Therefore, we can conclude that the proposed strate-

gies are more suitable for predicting long realistic paths than short paths that

could be simplified by a straight line.540

Moreover, we also studied the paths by gender. We analyzed the length

and the sinuosity of men and women paths. The results show that in general,

women’s paths are characterized by short distances (dM = 4.73 km, dW = 4.5

km, with p=0.0014) and high sinuosity (ϑM = 1.17 km, ϑW = 1.2 km, with

p=0.042). These empirical results coincide with the results obtained through545

surveys in other studies. Therefore, we can also conclude that the results ob-
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tained in experiments with Twitter data show that social networks can be used

as an alternative social sensor to traditional information sources.

The benefits of this work can be relevant to different stakeholders. For

example for city managers it will lead to improved public transport services550

as well as the urban organization of the city. For citizens, it will allow them

to detect points of interest or temporary concentration of pedestrians to help

them choose alternative routes. In addition, applications that suggest routes to

their users may incorporate additional, more accurate information on the use of

urban spaces in real time.555

The findings of this paper open new lines for future investigations of human

mobility. From the obtained results, we can state that urban human mobility

depends on urban structures and morphology. Although this study focuses on

the city of Valencia, the analysis can be extrapolated to other cities with different

geographical scales. Moreover, in addition to the urban structure and gender,560

other sociodemographic factors from user profiles in Twitter could be considered.

For instance, we can analyze the paths differences between citizens and tourists.

This can be useful for assisting on urban decision-making processes. These sets

of analysis will be performed in future work.
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