
Mechanisms to promote cooperation in
decentralized service?

E. del Val, M. Rebollo, and V. Botti

Departamento de Sistemas Informticos y Computacin,
Universitat Politcnica de Valncia, Camino de Vera S/N, Valencia, Spain

{edelval, mrebollo, vbotti}@dsic.upv.es

Abstract. In distributed environments where entities only have a par-
tial view of the system collaboration plays a key role. In the case of
decentralized service discovery in service-oriented Multi-Agent Systems,
agents only know about the services they provide and their direct neigh-
bors. Therefore, they need the cooperation of their neighbors in order to
locate the required services. However, cooperation is not always present
in open and distributed systems. Non-cooperative agents pursuing their
own goals could reject forwarding queries from other agents; therefore,
the efficiency of the decentralized service discovery could be seriously
damaged. In this paper we propose the combination of structural changes
and incentives based on utility in order to promote cooperation in the
service discovery process. The results show that, even in scenarios where
the predominant behavior is to not cooperate cooperation emerges.
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1 Introduction

There are distributed systems where the cooperation of all the entities that par-
ticipate in them is required to obtain a good performance that provides benefits
for all the participants. If participants that decide not to contribute in order
to maximize their own benefits and exploit the contributions of the others ap-
pear in these scenarios, they will obtain a high rate of benefits in the short
term. However, these benefits decrease as the number of selfish participants
increases, thereby damaging the performance of the whole system. There are
models of genetic and cultural evolution that confirm that the opportunity to
take advantage of others undermines and often eliminates cooperation [5]. These
cooperation problems are also known as social dilemmas (i.e., the tragedy of the
commons, the free-rider problem, the social trap). The promotion and stabiliza-
tion of cooperation in scenarios of this type has been considered to be an area
of interest.
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One of the scenarios where cooperation plays an important role is service
discovery in open Service-Oriented Multi–Agent systems (SOMAS) [1]. These
systems are populated by agents that offer their functionality through services.
Agents are social entities that are aware of other agents. However, sometimes this
awareness is not enough to find potential collaborators in order to achieve the
goals of agents. Therefore, open SOMAS should provide mechanisms to facilitate
the discovery of services provided by other agents. Nevertheless, this is not an
easy task due to the intrinsic characteristics of these systems.

As a consequence, agents need the cooperation of their neighbors in order
to forward queries to locate the required resources or services. Moreover, this
becomes even more difficult when there are self–interested agents that do not
cooperate with other agents in order to avoid the cost of forwarding queries. In
that case, if there are no mechanisms to deal with these agents and promote
cooperation, the performance of the whole system could be seriously compro-
mised. In general, many of the approaches that deal with decentralized search
of resources assume that entities that are part of the system have a cooperative
behavior. However, in real scenarios this fact cannot be assumed. In this section,
we present some of the areas that traditionally have dealt with the cooperation
emergence.

Approaches based on Game Theory have been widely used to explain mech-
anisms through which cooperation can emerge and be maintained in different
scenarios. For instance, in scenarios where individuals interact repeatedly, selfish
or altruistic actions would be returned in future. In these scenarios, the mech-
anism to facilitate the emergence of cooperation is direct reciprocity. In every
round, an individual has two alternatives: to cooperate or not cooperate. If the
individual cooperates, the other individual may cooperate later. Hence, it might
compensate to collaborate. In this scenario, the best strategy when the majority
are defectors is ’tit-for-tat’. Otherwise, the strategy ’win-stay, lose-shift’ is bet-
ter for maintaining cooperation [10]. When agents do not always interact with
the same individuals, there are other mechanisms such as indirect reciprocity
or tags. Indirect reciprocity is used in environments where agents interact with
other agents who have information about their previous interactions with other
agents. Trust and reputation are techniques that are used for indirect reciprocity
[9]. Punishment has also been considered to promote cooperation and to over-
come the ’tragedy of the commons’ [5]. Punishment is present in human societies
where sanctioning institutions apply a punishment to those that do not obey the
law. In systems where such centralized institutions do not exist, individuals are
willing to punish defectors even though this implies a cost for them [6]. In gen-
eral, punishment has been proven to be an efficient way to maintain cooperation
[12].

Many approaches that are based on games assume well–mixed populations
where everybody interacts with equal frequency with everybody else. However,
real populations are not well–mixed. In real populations, some individuals in-
teract more often than others; therefore, to understand the social behavior of
the systems it is important to consider the social structure. The social structure



is represented by a network where links are established by the individuals fol-
lowing certain preferences. There are several works that analyze the influence
of the network structure in the emergence of cooperation. These works study
how structural parameters such as clustering or degree distribution affect the
emergence and maintenance of cooperation [11, 7].

Although there are many works that take into account the structure of the
networks, there are some works that not only consider the structure of the net-
work, but also consider how local changes in the network structure can influence
the collective social behavior. Egúıluz et al. [3] present a model that uses the
Prisoner’s Dilemma game and social plasticity in random undirected networks
of agents. Agents update their behavior in discrete time steps using an imita-
tion strategy that considers the payoff of neighbors. The social plasticity (i.e.,
changes in structural links) is considered when an agent imitates a defector in
order to facilitate the replacement of an unprofitable relationship with a new
one that is randomly chosen. This process creates a hierarchical topology that
plays an important role in sustaining cooperation. Griffiths et al. [4] propose
a mechanism that considers context awareness and tags of agents to promote
cooperation. Moreover, agents can remove part of their connections with agents
that are not cooperative and add connections with others that can improve co-
operation. There are other approaches that also make use of rewiring techniques
and partial observation to facilitate the emergence of cooperation [13]. Rewiring
allows agents to decide to replace a link after a number of unsuccessful inter-
actions. Partial observation allows agents to observe a subset of other agents
that are located outside of their circle of interaction, and afterwards, the agent
imitates the majority action taken by the observed agents.

This paper proposes a combination of decentralized mechanisms to facilitate
the emergence of cooperation in a service discovery scenario. In this scenario,
agents are located in a network and their interactions are influenced by the
network structure. We propose the integration of local structural changes and
the use of incentives to promote cooperation when self-interested agents appear.
The combination of mechanisms that we propose is based on social plasticity and
incentives. The obtained results show that, even in adverse situations where there
is a large number of non–cooperative agents, our proposal obtains better results
than other mechanisms proposed in the literature and the performance of the
system is not seriously affected. The main differences with existing approaches
are the following: (i) our mechanism is asynchronous, i.e., agents update their
behavior when they participate in the service discovery process; (ii) the payoff
calculation is based on local information obtained from the activity of agents
and the results in the discovery process; (iii) in the rewiring process, agents
only break links with those neighbors that have non-cooperative behavior, and
instead of replacing them randomly, the agents look for another agent based on
their preferences; (iv) agents are able to detect when it is more appropriate to
use incentives or social plasticity taking into account local information about
the degree of cooperation of their neighborhood.



2 System Model

The proposed combination of mechanisms to facilitate the emergence of cooper-
ation is applied in a network of autonomous agents that offer their functionality
through a set of semantic services. These agents have a reduced view of the global
community: just a limited number of direct neighbors are known and the rest
of the network remains invisible to them. These agents have a set of neighbors
that are established based on a social feature called homophily [8, 2]. The idea
behind the homophily concept is that individuals tend to interact and establish
links with similar individuals through a set of social dimensions. In the context
of SOMAS, two agents are considered similar if they offer similar services.

The structural relations between agents influence their interactions, and,
therefore, influence the behavior of the agents. In the discovery process, if an
agent needs to locate another agent that provides a service in order to achieve
one of its goals, it should rely on the cooperation of its direct neighbors. Based
on the local information about the success or failure of their previous interac-
tions with their direct neighbors, agents update their behavior (i.e., cooperate
or not cooperate in the discovery process) and decide when it is appropriate to
change their current structural relations. The main components that are part of
the system and that participate in the discovery process are described in this
section.

Definition 1 (System). The system is defined as an Open Service-Oriented
Multi-Agent System SOMAS = (A, L), where A = {ai, ..., an} is a finite set of
autonomous agents that are part of the system, and L ⊆ A × A is the set of
links, where each link (ai, aj) ∈ L indicates the existence of a direct relationship
between agent ai and agent aj based on their degree of homophily.

It is assumed that the knowledge relationship between agents is symmetric, so
the network is an undirected graph.

Agents are characterized by the set of services they provide and an internal
state, where they store information about their degree of cooperation and the
activity related to the discovery process.

Definition 2 (Agent). An agent ai ∈ A is characterized by a tuple (Si, Ni, sti)
where:

– Si = {s1, . . . , sl} is the set of semantic service descriptions of the services
provided by the agent;

– Ni is the set of neighbors of the agent, Ni ⊆ A− {ai} : ∀aj ∈ Ni,∃(ai, aj) ∈
L, and |Ni| > 0. It is assumed that |Ni| � |A|;

– sti is the internal state of the agent. It is defined by a set of
(dci, Ci,Qi,SQi,RQij ,Pi,Ri):
• dci represents the degree of cooperation of agent ai. dci ranges in the

interval [0,1],
• Ci represents the behavior of agent ai. Ci can take two values: cooperative

or not cooperative,



• Qi is the number of queries that agent ai forwarded,
• SQi is the number of queries that the agent ai forwarded in successful

discovery processes,
• RQij is the number of queries from agent ai that agent aj refused to

forward,
• Pi is the number of service requests attended to by agent ai,
• Ri is the number of service requests sent by agent ai,

Network Creation Process The structure of the system is defined by the
relationships between agents. A relationship between two agents is established
based on a social feature called homophily [8], which is considered to be self–
organization criterion [2]. The homophily concept translated to the agent context
has been considered as the similarity between two agents based on service infor-
mation. Two agents in the system have a high degree of homophily if they offer
similar services. The degree of homophily between two agents H(ai, aj) ∈ [0, 1],
where the higher the homophily value is, the more similar the agents are. Specif-
ically, in the proposed system, agents establish links with other agents based on
this homophily degree. Agents have a greater probability of establishing links
with agents that have similar attributes than with dissimilar ones. When an
agent arrives to the system, it must be joined to an existing agent. The result of
using this criterion to establish links between agents is a growing network struc-
ture based on homophily that has an exponential distribution of its degree of
connection. This structure has certain small–world characteristics that facilitates
the task of decentralized service discovery only considering local information. For
a detailed mathematical treatment about how homophily is calculated and the
network creation process, we refer the reader to [2].

Service discovery process The service discovery process relies on the cooper-
ation of the agents. This process starts when an agent needs to locate an agent
that offers a certain service in order to deal with one of its goals. Initially, agent
ai creates a query with the terms of the service.

The discovery process follows a hill climbing algorithm, in which the query
is redirected exactly to one of the neighbors until the query arrives to an agent
who provides a service similar enough to the required service. The selection of
the most promising neighbor is a function that depends on the similarity of the
neighbor and its degree:

FNi(at) = argmax
aj∈Ni

1−

1−

 H(aj , at)∑
an∈Ni

H(an, at)



|Nj |

 (1)

This formula uses the same homophily–based factor (H) that has been used in
the network formation [2] and a degree–based factor (number of neighbors |Nj |)



to select the most promising neighbor. The divisor of the expression is just a
normalization factor. This process continues until a suitable agent is found or
the number of times the query has been forwarded is over a maximum bound or
Time to Live (TTL).

When self–interest is introduced in the system, agents decide to cooperate
(to pass the service query to one of their neighbors) or not to do it. In the latter
case, an alternative path must be located. As a result of this non-cooperative
behavior, the number of steps required to reach the target agent av increases con-
siderably. Therefore, cooperative agents must forward more queries, the number
of searches that end successfully is reduced, and the system efficiency decreases.
The worst case is when the length of a path is near to the TTL and the ser-
vice is finally not found. In this situation, the effort of all cooperative agents is
useless. For that reason, it is important to provide mechanisms to be able to con-
front situations where agents are pursuing their own goals without cooperating
and are compromising the performance of the overall system. These mechanisms
should promote and maintain cooperation in the system in order to guarantee
the proper performance of the system.

2.1 Structural Mechanism: Social Plasticity

The structure of the network influences interactions of agents, therefore it is im-
portant to provide agents mechanisms to be able of changing their local structure
in the network. Through interactions during the service discovery process, agents
are able to change their relations taking into account which neighbors provide
profitable relationships and which do not. This feature is called social plasticity
[3]. Social plasticity is the capacity of individuals to change their relationships as
time passes. Specifically, in our system, each agent maintains information related
to its neighbors. This information consists of the number of times a neighbor
has refused to forward one of its queries RQij . The agent keeps a counter for
each of its links in its internal state (sti). Each counter is increased by one unit
each time that a query is refused by a neighbor. If a neighbor decides to change
its behavior and forwards queries, the agent updates the counter to 0.

Each time an agent tries to forward a query to one of its neighbors aj , it
updates its information associated to the link with aj and evaluates the utility
of the link. In order to evaluate the utility of a link, an agent ai uses a decay
function that calculates the probability of maintaining a link with aj taking into
account the number of queries that it would have sent through neighbor aj but
that aj refused to forward. This function is a sigmoid that ranges between [0,1],

D(RQij) =
1

1 + e
−(RQij−d)

y

, (2)

where RQij is the number of queries that neighbor aj received from agent ai and
that aj decided not to forward. The most influential constant is the displacement
d, that indicates how benevolent an agent is with respect the non–cooperative
behavior of its neighbors. A high value of d means that the agent is going to



Fig. 1: Sigmoid function that calculates the probability of breaking a current link with
a neighbor and looking for a new neighbor. The figure shows the shape of the function
with different values of displacement parameter d.

consider a higher number of refuses in order to make a decision about looking
for another neighbor. A low value means that it is not permissive with the
number of refuses (see Figure 1). y parameter indicates how abrupt the change
of behavior is (the lower y value is, the more steepy the slope is). The function
D(RQij) returns a value in the range [0,1], where 0 indicates that the agent does
not consider that the number of rejects from its neighbor is enough to make a
decision about rewiring, and 1 indicates that it is necessary to change the link.

The agent ai uses the D function and considering this probability it decides
to break its current link and look for a neighbor to maintain its degree of con-
nectivity. In the case that agent ai decides to break the link with neighbor aj ,
agent ai looks for another agent to establish a new link in order to maintain
its degree of connectivity. We assume that any alternative agent (cooperator or
non–cooperator) always accepts a new partner. There are different criteria for
establishing a new link with another agent in the network. We have considered
two criteria:

– establishing a link with a neighbor’s neighbor ;
– looking for a similar neighbor to the previous neighbor.

The use of social plasticity to isolate or to reduce the degree of connection
(thereby the influence of non–cooperative agents) improves the performance of
the system. However, the use of structural mechanisms when the number of
non–collaborator agents increases could break the network structure into several
isolated parts, thus reducing the system performance. Moreover, it is difficult to
break links with non-cooperative agents that are located in the fringes of the
network and have a low degree of connection. These non–cooperative agents do
not receive enough queries to consider a rewiring action. Note that, in scenarios



Fig. 2: Evolution of the number of cooperative and non-cooperative agents after 1,000
queries generated in the system. Initially, there were 75 agents that cooperate and 25
that did not cooperate. The nodes represent agents and the numbers are the identifiers
of the agents. Blue nodes represent cooperative agents and red nodes non-cooperative
agents.

where structural changes have a significant cost, this mechanism can not be al-
ways used. As an alternative to this method, in the following section, we propose
an incentive mechanism that does not change the network structure to facilitate
the emergence of cooperation.

2.2 Incentive Mechanism

We assume that each action in our model implies a cost or a benefit. For instance,
forwarding a request has a cost since an agent has to dedicate time and resources
to decide which neighbor is the best one to forward the query to. If a query finally
arrives to an agent that provides the required service (i.e., the search process
ends before the TTL), then the agents that participated by cooperating in the
forwarding process will obtain a benefit for their contribution. Otherwise, the
agents lose their investment in the forwarding process. Moreover, an agent that
locates the required provider agent must pay for the service and the provider
gets a benefit for attending to the request.

When the number of cooperative agents is greater than the number of non–
cooperative agents, non–cooperative agents are prone to change their behavior
to cooperate since the probability that a query ends successfully is high, and,
therefore, cooperation receives a reward if the discovery process ends success-
fully. However, when the number of non–cooperators is greater than the number
of cooperators, cooperative behavior does not always emerge. In this case, the in-



centive of cooperating in the discovery process is not always enough to maintain
cooperation.

An agent calculates its payoff with the following function based on its be-
havior and taking into account its actions:

PO(sti) = SQi · sq −Qi · q + Pi · p−Ri · r (3)

where:

– SQi,Qi,Pi,Ri is the information of the internal state (sti) of an agent (see
Definition 2),

– q is the cost of forwarding queries,
– sq is the benefit obtained by the agents that participate by forwarding queries

in a service discovery process that ends successfully,
– p is the benefit obtained by the agents that provide a service,
– r is the cost of requesting a service.

We assume that all the agents have the same costs and benefits for the actions.
Agents are rational entities that update their own behavior to maximize their
own payoff. The strategy update rule implemented in this model is based on
imitation. Agents take into account the payoff of their direct neighbors to update
their behavior. If an agent has a neighbor that obtains a higher payoff, the agent
changes its behavior to the behavior of its neighbor.

We would like to remark that cooperative behavior analysis is asynchronous.
Agents that analyze and update their cooperative behavior are those that during
the service discovery process are considered to be the most promising candidates
to forward a query, even though they finally do not forward the query.

To assess the impact of the incentive mechanism, we conducted several sim-
ulations in small networks of 100 agents and two different configurations. In the
networks of Figure 2, 75% of the agents were cooperative and 25% were non-
cooperative. The costs and benefits of the actions were: q = 0.15, sq = 0.30,
p = 0.5, and r = 0.5. Agents update their behavior when they participate in
the discovery process. In the networks of Figure 2, non–cooperative agents are
represented by red nodes and cooperative agents by blue nodes.

Figure 2a shows the effects of the incentive mechanism after 1,000 queries
generated in the system where the degree of connection is uniformly distributed
over the agents without taking into account their behavior. In this scenario,
the incentive mechanism is enough to promote cooperation among agents. The
majority of agents that do not cooperate are situated on the fringes of the
network since these positions are not easily influenced.

Figure 2b shows the effects of the incentive mechanism after 1,000 queries
generated in the system where the non-cooperative agents had a high degree of
connection. The non–cooperative agents got benefits quickly since they received
a high number of service requests and they do not have the cost of forward-
ing others’ queries. The cooperative agents had a great number of losses when
agents with a high degree of connection did not cooperate because the discov-
ery process took more steps, and, therefore, cooperative agents had the cost of



forwarding queries but they had a low probability of receiving a benefit since
the number of non-cooperators was too high and the probability of being suc-
cessful decreased significantly. In this scenario, non–cooperative agents obtained
a higher payoff than cooperative agents, and, therefore, had a greater influence
on their neighborhood. Although the influence of the non–cooperative agents
was clear, their influence was not enough to convert all the cooperative agents
into non–cooperative agents. There are some special situations where coopera-
tive agents have influence over the non–cooperative even though they have a low
degree of connection. These cooperative agents are located on the fringes of the
network with a degree of 1. Therefore, they have less probability of participating
in the search process, and they do not have many losses because of the forward-
ing process. This fact gives them more benefits than their neighbors, and they
can influence their behavior. Moreover, nodes that have a neighborhood with the
same behavior and a low degree of connectivity do not change their behavior.
However, this is not enough to influence nodes beyond the neighborhood.

2.3 Adaptive Combination of Social Plasticity and Incentives

The use of structural mechanisms such as social plasticity or incentives promotes
the emergence of cooperation. Nevertheless, in scenarios where the predominant
behavior is to not cooperate and non–cooperative agents have a significant in-
fluence (i.e., high degree of connection), the separate use of these mechanisms is
not enough. Social plasticity could break the network into several isolated parts
and if structural changes imply an economic cost, not all the agents may be able
to afford them. A mechanism based on incentives is enough when the number of
non-cooperative agents is low, but in other situations the expected payoff does
not compensate the effort to cooperate. Therefore, we propose the integration of
both mechanisms in order to find a trade-off between the costs and the degree
of cooperation achieved in the network.

Specifically, both mechanisms are included in the process carried out by each
agent when it has to decide the most promising neighbor to forward the query to
the target agent. Once an agent ai has selected a neighbor aj , agent aj evaluates
its behavior comparing its payoff with the rest of its direct neighbors. Based
on this comparison, the agent decides whether or not to change its behavior in
order to improve its payoff in future interactions.

If agent aj does not cooperate, then ai increases the number of times its
neighbor aj has refused to forward a query. Moreover, ai evaluates whether
or not it is appropriate to rewire the current link with aj in order to find a
better connection. In order to find if the number of non-cooperator neighbors
is over a certain threshold, the mechanism used to facilitate the emergence of
cooperation is the social plasticity mechanism combined with the mechanism
based on incentives. Otherwise, the mechanism used is based on incentives only.
If aj does not cooperate, ai eliminates aj from the set of neighbors to consider
in the current forwarding process and repeats the process until a cooperative
neighbor is found or the set of neighbors to consider is empty.



Fig. 3: Payoff matrix: (Left) Prisioner’s Dilemma, (Right) Stag Hunt Dilemma.

Finally, if ai finds a neighbor that cooperates, the neighbor increases by one
its local information about the number of queries forwarded. Otherwise, the
search process fails.

With the combination of the two mechanisms, social plasticity and incentives,
non–cooperative agents lose connectivity, benefits, and influence in the neigh-
borhood. As a consequence, they decide to change their behavior to the most
promising behavior in the neighborhood, which is to cooperate. In situations
where the number of non–cooperative agents is significant, this mechanism al-
lows the emergence of cooperation. Some agents remain non–cooperative because
they are located where the degree of clustering and the degree of connection are
too low; therefore, the number of services provided and the queries forwarded
are too low to influence the others.

3 Results and Discussion

The tests were performed on a set of 10 undirected networks based on prefer-
ences where the degree of connection followed and exponential distribution. The
networks were populated by 1,000 agents. The agents played one role and offered
one semantic web service. The set of semantic service descriptions used for the
experiments was taken from the OWL-S TC4 test collection 1.

All the agents in the system had the same probability of generating service
queries. A query was successfully solved when the degree of semantic match
between the semantic service descriptions was over a threshold ε = 0.75 with
TTL = 100. The query distribution in the system was modeled as a uniform
distribution. In the experiments, we made a snapshot of all of the metrics every
time 5,000 queries were solved in the system in order to see the evolution of the
metrics.

We compared our proposal of combining social plasticity and incentives with
the separate use of both mechanisms. Moreover, we also compared the proposal
with other mechanisms present in the literature. The set of approaches that we
considered in the tests were the following:

– Social plasticity (SP): agents only consider social plasticity to promote
cooperation in the system. The value used for the displacement parameter
in the decay function was d = 7 and the value used for the slope parameter
was y = 4.

1 http://www.semwebcentral.org/projects/owls-tc/



– Incentives: agents only consider incentives to facilitate the emergence of
cooperation. The costs and benefits of the actions were: q = 0.15, sq = 0.30,
p = 0.5, and r = 0.5.

– Incentives and Social Plasticity (Incentives+SP): agents consider the
combination of incentives and social plasticity to facilitate the emergence of
cooperation. The costs and benefits of the actions were: q = 0.15, sq = 0.30,
p = 0.5, and r = 0.5, and the value for the displacement parameter was
d = 7 and the value used for the slope parameter was y = 4.

– Reinforcement Learning (RL): The reinforcement learning method used
to promote cooperation was WPL. This algorithm is based on the following
idea to achieve convergence: slow down learning when moving away from a
stable policy and speed up when moving towards a stable policy. This idea
is similar to the Win or Lose Fast (WOLF) method, but the WPL method
offers better performance than WOLF [14].

– Game Theory. We considered two type of games: the Prisoner’s Dilemma
(PD), where individuals might not cooperate even though it seems to be
their best interest to do so; and Stag and Hunt (SH), which describes a
conflict between safety and social cooperation. The main difference between
them is the payoff matrix (see Figure 3). In these games, cooperate implies
forwarding queries and not cooperate rejecting forward queries. Agent ai

updates its current strategy by imitating the strategy of the neighbor with
the largest payoff. If ai imitates a non-cooperative agent aj , it breaks its link
with aj and establishes a new link with another agent taking into account
the homophily criterion with a probability of p = 0.01.

The tests focus on a set of metrics that are meaningful for the analysis of the
performance of the system: (i) the evolution of the number of cooperator agents
in the system; (ii) the average number of steps required to locate an appropriate
agent that solves a query; (iii) the percentage of queries that are solved before
the TTL; (iv) the number of failures caused by the presence of non–cooperator
agents.

When the number of collaborative agents is high enough, incentive–based
methods has similar performance and ’SH’, ’SP’ and ’Incentives+SP’ obtained
similar results. The main advantage of the combined method ’Incentives+SP’
is that the average path in the query resolution is sorter and the number of
structural changes is lower, so it seems to be more efficient (see [2] for a de-
tailed analysis). But the difference increases in scenarios where the number of
non–cooperators is greater than the number of cooperators, the mechanisms to
facilitate the emergence the cooperation become more important. The behavior
of the system when 600 non–cooperator and 400 cooperator agents are present
in the system is evaluated.

Figure 4 (Left) shows the evolution of cooperation in the system when differ-
ent mechanisms were used by the agents to promote cooperation. The best results
were obtained by the ’Incentives+SP’ mechanism. ’Incentives+SP’ achieved the
cooperation of the majority of agents in 5 snapshots. The ’SH’ mechanism ob-
tained worse results than ’Incentives+SP’ mechanism due to the presence of a



Fig. 4: Evaluation of (Left) the evolution of cooperation in the system, and (Right) the
average path length in the discovery process when there are 400 cooperative agents
and 600 non-cooperative agents.

high number of non-cooperators. Agents prefer the safety of not cooperating over
the risk of cooperating. The ’RL’ mechanism maintained the cooperation level,
but it could not increase it. The ’DP’ mechanism did not promote cooperation
due to the payoff for not cooperating taking into account that the majority of
the network did not cooperate. Therefore, the agents imitated the behavior of
the agents with the highest payoff which were the non-cooperators. The ’Incen-
tives’ mechanism did not promote cooperation since the number of agents that
did not cooperate forced the cooperators to invest resources in searches that
were going to fail; therefore, the payoff of the cooperators decreased and the
non-cooperators did not imitate them.

Figure 4 (Right) shows the average path length of successful searches. The
’SP’ and ’Incentives+SP’ mechanisms obtained longer paths because the num-
ber of potential provider agents was reduced since some of them could not
be reached because they were isolated. Consequently, there were some service
provider agents that took more steps to find. In the rest of the mechanisms, the
number of non-cooperator agents was high enough to make the majority of the
searches fail. Hence, the number of queries that ended successfully was low and
these queries were those that could be solved near the neighborhood of the agent
that generated the query.

Figure 5 (Left) shows the percentage of failures caused by non-cooperator
agents. The ’Incentives+SP’ and ’SP’ mechanisms reduced the number of failures
considerably. Since the other mechanisms could not deal with non-cooperators,
the reason for the unsuccessful searches was the absence of cooperation. Figure
5 (Right) shows the percentage of successful searches. When agents used the
’Incentives+SP’ or ’SP’ mechanisms, cooperator agents were able to deal grad-
ually with non-cooperators and improved the successful rate of searches. The
’SH’ mechanism also improved the success rate, but the improvement was not
as significant as the improvement achieved by ’Incentives+SP’ or ’SP’.



Fig. 5: Evaluation of (Left) the percentage of failures because of the absence of cooper-
ation, and (Right) the percentage of searches that end successfully in the system when
there are 400 cooperative agents and 600 non-cooperative agents.

4 Conclusions

This article addresses the problem of emergence of cooperation in scenarios where
cooperation is required to achieve a good performance that benefits all of the
participants. Specifically, our proposal focuses on the emergence of cooperation
in decentralized service discovery scenarios where agents need the cooperation
of their neighbors in order to locate other agents that offer services that they
require. Therefore, if selfish agents appear in the system, in the long term, as the
number of non-cooperator agents increases, the service discovery process could be
seriously compromised. For this reason, it is important to provide mechanisms
that facilitate the emergence and maintenance of cooperation. In this paper,
we present the combination of two mechanisms to facilitate the emergence of
cooperation in open service-oriented multi-agent systems where not all the agents
have cooperative behavior.

In order to deal efficiently with the emergence of cooperation even in sce-
narios where the number of non-cooperators is higher than the number of co-
operators, we have proposed an adaptive combination of social plasticity and
incentives. Agents considering local information are able to analyze and change
their behavior, influence their neighbors, and decide when it is more appropriate
the use social plasticity and incentives mechanisms or when it is enough with
the incentives mechanism. With this combination, agents reduce the number of
structural changes thereby avoiding the fragmentation of the network and the
decrease of potential providers that can be considered during the service dis-
covery process. The structural changes are enough to isolate non-cooperative
agents and to increase the effectiveness of incentives in the emergence of coop-
eration even in scenarios where the majority of agents are non-cooperative. The
experiments confirm that this combination of mechanisms promote cooperation
in service discovery scenarios with different degrees of cooperation in the popu-
lation of agents and offer better results than their use separate and than other



approaches proposed for promoting cooperation in networks and that are based
on game theory or reinforcement learning.
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