
Decentralized Semantic Service Discovery in MAS

E. del Val, M. Rebollo, and V. Botti?

Grupo de Tecnologı́a Informática - Inteligencia Artificial
Departamento de Sistemas Informáticos y Computación

Universidad Politécnica de Valencia
Camino de Vera S/N 46022 Valencia (Spain)
{edelval,mrebollo,vbotti}@dsic.upv.es

Abstract. Service-Oriented Multi-Agent Systems (SOMAS) are dynamic sys-
tems populated by heterogeneous agents which can enter or leave the system dy-
namically. As a consequence of the heterogeneity feature, organizational concepts
such as roles are useful to facilitate the coordination in the system. In addition,
agent functionality should be modelled as services in order to allow heteroge-
neous agents or other entities to interact in a standardized way. Furthermore, due
to the large-scale and the adaptive needs of the system, the traditional directory
facilitators or middle-agents are not suitable for the management of the agents
services. In this paper we present a distributed approach for agent service man-
agement in SOMAS based on social networks. The proposal provides a fully
decentralized structure and allows agents to locate services using only local in-
formation. The system is enhanced using semantic information in the generation
of the system structure and also in the search process.

1 Introduction

Service-Oriented Multi-Agent Systems (SOMAS) can be described as open and dy-
namic systems, where agents provide basic functionality through services and new
agents can enter to the system and existing ones leave. An important issue that has
raised great interest in the research community in the latest years is service discov-
ery. In open systems where there is a large number of agents and the available agents
change dynamically, finding the appropriate agent which offers the service required is
not an easy task. Conventional approaches to locate agents with certain functionality in
SOMAS, such as registries or middle-agents, are centralized approaches which are not
always appropriated for large-scale and highly dynamic environments. These proposals
present some weakness such as bottlenecks, complexity or the huge amount of mem-
ory needed to keep all the information about the agent’s functionality when the system
scales. Distributed approaches, such as agent coalitions or federations of registries, have
been proposed to solve some of these problems but the required coordination effort to
create the coalitions and to maintain data consistency between distributed registries
makes these proposals not suitable for highly dynamic environments.
? This paper is a reviewed version of a paper named ”Semantic Service Discovery in MAS Using

Social Networks” which has been presented at WAT (Workshop on Agreement Technologies),
in November 2010.

2 E. del Val, M. Rebollo, and V. Botti

An alternative for traditional proposals is the use of social networks[19][22]. Hu-
man beings create social structures in a decentralized way which allows to locate other
individual in a few steps considering only local information. This fact was observed by
Milgram in the well known experiment of ’six degrees of separation’[18]. The results
of this experiment arose two questions: how is the structure of these social networks
and how an effective search of individuals is carried on only with local information. In
the wake of this experiment, several works started to pay attention on the analysis of
the underlying structures in human societies and the properties of these structures.

As a result of that, several models based on mathematical functions have been pro-
posed to simulate the structure in real social networks. These models try to reflect how
social links are established between individuals to form a network which can guide
the search. These networks such as small-world or preferential attachment network,
are called navigable social networks and it can be ensured that short paths between
two random individuals can be found using only local information. How an effective
search is carried on only with local information is the other important aspect. Which
criteria should be follow by the individuals in order to guide the search towards the tar-
get? This depends on the structure of the network. There are some strategies that have
better results depending of the underlying structure where it is applied. For instance
in small-world networks similarity or geographical distance can be considered a good
parameters to consider while strategies guided by degree are not so suitable.

In this work, we propose the use of a social network model as the underlying struc-
ture of a service discovery system for agents. The structure relies on a social feature
present in many social networks called homophily[9]. Homophily expresses the idea
that similar people interact with higher frequency than dissimilar people. Therefore, in
our system agents with similar roles and services have more probability to be linked.
The system provides a fully decentralized structure and allows agents to locate services
using only local information. The system is enhanced using semantic information in the
generation of the system structure and also in the search process.

2 Related Work

Open and dynamic environments where the scalability and the workload are low make
use of middleagents to facilitate service discovery [8][16][17]. The matchmakers could
provide an optimal matching due to they consider all the registered services in the sys-
tem. Unfortunately, this kind of agents could be a bottleneck when the workload in-
creases. Other drawbacks are their complexity, the huge amount of memory needed
to keep service advertisements and the cost of service composition as the number of
services grows significantly. Different approaches have been suggested to overcome the
above mentioned problems. Peer-to-peer approaches [6][2][14] broadcast a query using
local knowledge The drawback of this approach to service discovery is that the commu-
nication among agents is essential and the overall communication traffic overhead may
be large. Another distributed way to locate distributed services is to form coalitions or
clusters[13][12][10]. Nevertheless, the choice of what coalitions are going to be formed
is a difficult task. This entails recursively to calculate the values of the coalitions and
later selecting the coalition with the best result. A third way for agents to discover ser-

Decentralized Semantic Service Discovery in MAS 3

vices in efficiently is the distribution of the middleagents or facilitators [15][11][7].
These proposals suggest to split the function of the service facilitator among a group of
agents. The system designer assigns a local matchmaker to each host or segment of the
system, which provides matchmaking services to agents in its vicinity (its segment). In
systems with very large segments the problems of scalability are only marginally re-
lieved by this approach because the large segments become overloaded systems which
have local bottlenecks. Another case in which this approach is not useful is in systems
with many cross-links between segments. In this case the overhead of coordinating
tasks among local matchmakers might be greater than the benefit obtained from their
distribution.

3 Proposed System and Definitions

The proposal that we present here tries to overcome drawbacks of current discovery
approaches in open SOMAS through a completely distributed approach, considering
semantic information about organizational roles and services. This approach is based
on social networks as underlying structure. The advantages and contributions of this
proposal compared to others are:

– System which integrates services and agents. Agents have social and proactive ca-
pabilities which provide more flexibility and adaptability to the system. Services
facilitate the reusability and interoperability. Here, agents functionality is described
in terms of services, therefore we obtain the advantages of both technologies.

– System structure that guarantees, in general, that a service if it exits is going to be
found in a bounded number of steps.

– Service discovery strategy that only needs local information to navigate the network
in order to reach the required service.

– The use of semantic information to create the system structure and to lead the ser-
vice search.

– Inclusion of organizational information in the service discovery process.

DEFINITION 1 (Agent-Service Discovery System). An SDS is defined as SDS = (A,
L), where A is the set of agents that are part of the SDS (nodes): A= {a1,...,an},
and each link `=(ai, aj)∈L indicates the existence of a knowledge or communication
relationship between agent ai and aj in the system (undirected links).

Agents are social entities which have local knowledge about its immediate neigh-
bors, including their identity, degree, organizational information and the semantic de-
scription of the services they offer, but it is unaware of the rest of the agents present in
the system.

DEFINITION 2 (Agent). An agent ai=(R,N) |ai ∈ A is a social entity which can play
several roles in different organizational units R={r1,. . . ,rn}:|R| > 0, has a neighbor-
hood N={ak,...,am}| ak ∈ N , ∃ (ai,ak)∈L, |N | > 0.

4 E. del Val, M. Rebollo, and V. Botti

The agent role determines the kind of services an agent offers. It is used to create
the structure of the system. Roles are defined inside an organization unit ou. The or-
ganization unit establishes a set of policies responsible of the structure of the system.
These policies are related to basic system operations (join, leave, discover. . .).

DEFINITION 3 (Role). A role in our system is defined as r = (φ,{s1,. . . sn},ou) ∈ R
where φ is a semantic concept for the role, ou is the organizational unit where the
agent plays the role r and {s1,. . . sp} is the set of services offered by the agent.

Each service si is a semantic service defined by the tuple: si = (I,O), where I
denotes the set of inputs and O denotes the set of outputs. The I and O of the service
are semantic concepts defined in a common ontology. To simplify the notation of the
system, we are going to consider that each agent plays one role and offers one service.

The agent-service discovery system that we present relies on a property present in
many real social networks: homophily. This word expresses the idea that similar people
tend to interact and establish links with higher probability than dissimilar people. There
are two types of homophily[9]:

– choice homophily, where patterns of interaction are driven by preferences for simi-
larity. This kind of homophily has two forms: status homophily, where the individu-
als are considered similar if they share a cultural background, and value homophily,
where individuals are considered similar on the basis of shared values, attitudes,
and believes.

– induced homophily, emerges not from individual choice, but from influence dynam-
ics that make individuals more similar over time.

In this work we focus on choice homophily and its two forms. In general, homophily
has demonstrated that is one of the most pronounced features in social networks[3][21].
Due to the efficiency of the social networks with this feature, we consider important to
consider this property in our system.

DEFINITION 4 (Agent homophily). In our SDS the homophily between two agents is
based on the status homophily and the value homophily:

– value homophily (Hv(ai,aj)) is defined over the agent’s services and it is consid-
ered as the semantic similarity between the services offered by the agents.

– status homophily (Hs(ai,aj)) is defined over the agent’s role and it is considered
as the semantic similarity between the roles played by the agents

Therefore, the homophily between two agents is defined as the linear combination of
value and status homophily:

H = α ∗ Hv + (1− α) ∗ Hs (1)

We are going to describe with more detail how are calculated each kind of ho-
mophily. The homophily function Hs(ai,aj), means the degree of match dom (exact,
subsumes, plug-in, fail) between the semantic concept of the roles played by the agents.

Hs(ai, aj) = role match(φi, φj) (2)

Decentralized Semantic Service Discovery in MAS 5

where role match is the function which calculates the semantic similarity between
φi and φj . The homophily function Hs(ai,aj), means the degree of match between the
services offered by the agents (si and sj).

Hv(ai, aj) = β ∗match(Ii, Ij) + (1− β) ∗match(Oi,Oj), (3)

where function match solves a bipartite matching problem between semantic ser-
vices. Before explaining the bipartite matching problem, we define a bipartite graph. In
our case we have two bipartite graphs, one where the vertexes are the inputs of the ser-
vices and the other where the vertexes are the outputs. In the case of matching between
the inputs of the services (the process is the same for the outputs) the bipartite graph
G=(Ii∪Ij , E) has a set of vertexes with service si inputs (Ii) and the other set with sj
inputs (Ij).
DEFINITION 5 (Full connected Weighted Bipartite Graph for Service Inputs) A Service
Inputs bipartite graph G=(I,E) is a graph whose vertexes can be divided into two
disjoint subsets Ii ∈ si and Ij ∈ sj: Ii∪Ij=I ∧ Ii∩Ij = ∅. Each vertex from one of
the subsets is connected to other vertex in the other subset ek=(ini,inj) ∈ E, ini∈ Ii
∧ inj∈ Ij . The weight of each edge ωk is established with dom between service input
concepts (ini and inj).

DEFINITION 6 (Relaxed Weighted Matching Bipartite Graph for Service Inputs) Given
a Service Inputs bipartite graph G=(Ii∪Ij ,E), its matching G′=(Ii∪Ij ,E′) E′ ⊆ E
is a graph where all the vertexes of one set are connected with the other set of vertexes
only with one edge. In this graph it we allow that edges share a vertex to give more
flexibility to the matching. The sum of weights (WG′) of the edges in the matching is
maximized:

WG′ =

∑
∀ek∈E′

ωk

|Ii| (4)

4 System Operations

4.1 Join

The process that an agent should follow to get into the SDS is as following (see Alg. 1):
the agent ai tries to establish a set of connections with other agents already present in
the system. The number of connections that the agent is going to establish is generated
by a random function which follows an exponential distribution. The idea is to generate
a system with an exponential degree distribution to achieve the structure of a preferen-
tial attachment network[1]. A preferential attachment network it is characterized by a
degree distribution which follows a power-law degree distribution, p(dg) ∝ dgλ, where
p(dg) indicates the probability to be connected to a node with degree dg. This means
that there are some nodes have a high degree and the majority has a low degree. This
structure ensures that the diameter of the network is ln |A|, where |A| is the number
of agents in the SDS [4]. This model is present in many ’online communities’ such

6 E. del Val, M. Rebollo, and V. Botti

services. The similarity function sim(Agi, Agj), means the degree of similarity between
si and sj . It is defined as:

sim(Agi, Agj) = match(Ii, Ij) + match(Oi, Oj), (5)

where function match is a bipartite matching problem between semantic services.
Before explaining the bipartite matching problem, we define a bipartite graph. In our case
we have two bipartite graphs, one where the vertexes are the inputs of the services and
the other where the vertexes are the outputs. In the case of matching between the inputs
of the services (the process is the same for the outputs) the bipartite graph G=(Ii∪Ij , E)
has a set of vertexes with service si inputs (Ii) and the other set with sj inputs (Ij).

DEFINITION 4 (Weighted Bipartite Graph for Service Inputs) A Service Inputs bipartite
graph G=(I ,E) is a graph whose vertexes can be divided into two disjoint subsets Ii ∈
si and Ij ∈ sj: Ii∪Ij=I ∧ Ii∩Ij = ∅. Each vertex from one of the subsets is connected
to other vertex in the other subset ek=(ini,inj) ∈ E′, ini∈ Ii ∧ inj∈ Ij . The weight
of each edge ωk is established with the degree of match (dom) between service input
concepts (ini and inj). To establish the degree of match we use the semantic distance
between the concepts described in [?].

DEFINITION 5 (Bipartite Graph Matching for Service Inputs) Given a Service Inputs
bipartite graph G=(Ii∪Ij ,E), its matching G′=(Ii∪Ij ,E′) E′ ⊆ E is a graph where
two edges can not share the same vertex and the sum of weights (ωk) of the edges in the
matching,

∑
ek∈E′

ωk is minimized.

Comentar el caso en el q el numero de entradas de los dos servicios no coincida.
Mirar otra forma de calcular la funcion match.

Algorithm 1 Join, where Ag is the new agent and S the system
function Join(Ag, S)
connections←ExpRandom(λ)
connected←False
dg← 0
while ¬connected ∧ dg ≤ connections do

Agr←random(S)
if sim(Ag, Agr)r ≥ UniRandom(0,1) then

"(Ag,Agr)
dg←dg+1
connected←True

end if
end while
end function

3. Leave

When an agent leave the system could be for three reasons: (i)the demand of the ser-
vice is not enough and the agent decide voluntary to leave the system, (ii)failure or
(iii)’sabotage’ (Hay mas situaciones?).

services. The similarity function sim(Agi, Agj), means the degree of similarity between
si and sj . It is defined as:

sim(Agi, Agj) = match(Ii, Ij) + match(Oi, Oj), (5)

where function match is a bipartite matching problem between semantic services.
Before explaining the bipartite matching problem, we define a bipartite graph. In our case
we have two bipartite graphs, one where the vertexes are the inputs of the services and
the other where the vertexes are the outputs. In the case of matching between the inputs
of the services (the process is the same for the outputs) the bipartite graph G=(Ii∪Ij , E)
has a set of vertexes with service si inputs (Ii) and the other set with sj inputs (Ij).

DEFINITION 4 (Weighted Bipartite Graph for Service Inputs) A Service Inputs bipartite
graph G=(I ,E) is a graph whose vertexes can be divided into two disjoint subsets Ii ∈
si and Ij ∈ sj: Ii∪Ij=I ∧ Ii∩Ij = ∅. Each vertex from one of the subsets is connected
to other vertex in the other subset ek=(ini,inj) ∈ E′, ini∈ Ii ∧ inj∈ Ij . The weight
of each edge ωk is established with the degree of match (dom) between service input
concepts (ini and inj). To establish the degree of match we use the semantic distance
between the concepts described in [?].

DEFINITION 5 (Bipartite Graph Matching for Service Inputs) Given a Service Inputs
bipartite graph G=(Ii∪Ij ,E), its matching G′=(Ii∪Ij ,E′) E′ ⊆ E is a graph where
two edges can not share the same vertex and the sum of weights (ωk) of the edges in the
matching,

∑
ek∈E′

ωk is minimized.

Comentar el caso en el q el numero de entradas de los dos servicios no coincida.
Mirar otra forma de calcular la funcion match.

Algorithm 1 Join, where Ag is the new agent and S the system
function Join(Ag, S)
connections←ExpRandom(λ)
connected←False
dg← 0
while ¬connected ∧ dg ≤ connections do

Agr←random(S)
if sim(Ag, Agr)r ≥ UniRandom(0,1) then

"(Ag,Agr)
dg←dg+1
connected←True

end if
end while
end function

3. Leave

When an agent leave the system could be for three reasons: (i)the demand of the ser-
vice is not enough and the agent decide voluntary to leave the system, (ii)failure or
(iii)’sabotage’ (Hay mas situaciones?).

services. The similarity function sim(Agi, Agj), means the degree of similarity between
si and sj . It is defined as:

sim(Agi, Agj) = match(Ii, Ij) + match(Oi, Oj), (5)

where function match is a bipartite matching problem between semantic services.
Before explaining the bipartite matching problem, we define a bipartite graph. In our case
we have two bipartite graphs, one where the vertexes are the inputs of the services and
the other where the vertexes are the outputs. In the case of matching between the inputs
of the services (the process is the same for the outputs) the bipartite graph G=(Ii∪Ij , E)
has a set of vertexes with service si inputs (Ii) and the other set with sj inputs (Ij).

DEFINITION 4 (Weighted Bipartite Graph for Service Inputs) A Service Inputs bipartite
graph G=(I ,E) is a graph whose vertexes can be divided into two disjoint subsets Ii ∈
si and Ij ∈ sj: Ii∪Ij=I ∧ Ii∩Ij = ∅. Each vertex from one of the subsets is connected
to other vertex in the other subset ek=(ini,inj) ∈ E′, ini∈ Ii ∧ inj∈ Ij . The weight
of each edge ωk is established with the degree of match (dom) between service input
concepts (ini and inj). To establish the degree of match we use the semantic distance
between the concepts described in [?].

DEFINITION 5 (Bipartite Graph Matching for Service Inputs) Given a Service Inputs
bipartite graph G=(Ii∪Ij ,E), its matching G′=(Ii∪Ij ,E′) E′ ⊆ E is a graph where
two edges can not share the same vertex and the sum of weights (ωk) of the edges in the
matching,

∑
ek∈E′

ωk is minimized.

Comentar el caso en el q el numero de entradas de los dos servicios no coincida.
Mirar otra forma de calcular la funcion match.

Algorithm 1 Join, where Ag is the new agent and S the system
function Join(Ag, S)
connections←ExpRandom(λ)
connected←False
dg← 0
while ¬connected ∧ dg ≤ connections do

Agr←random(S)
if sim(Ag, Agr)r ≥ UniRandom(0,1) then

"(Ag,Agr)
dg←dg+1
connected←True

end if
end while
end function

3. Leave

When an agent leave the system could be for three reasons: (i)the demand of the ser-
vice is not enough and the agent decide voluntary to leave the system, (ii)failure or
(iii)’sabotage’ (Hay mas situaciones?).

services. The similarity function sim(Agi, Agj), means the degree of similarity between
si and sj . It is defined as:

sim(Agi, Agj) = match(Ii, Ij) + match(Oi, Oj), (5)

where function match is a bipartite matching problem between semantic services.
Before explaining the bipartite matching problem, we define a bipartite graph. In our case
we have two bipartite graphs, one where the vertexes are the inputs of the services and
the other where the vertexes are the outputs. In the case of matching between the inputs
of the services (the process is the same for the outputs) the bipartite graph G=(Ii∪Ij , E)
has a set of vertexes with service si inputs (Ii) and the other set with sj inputs (Ij).

DEFINITION 4 (Weighted Bipartite Graph for Service Inputs) A Service Inputs bipartite
graph G=(I ,E) is a graph whose vertexes can be divided into two disjoint subsets Ii ∈
si and Ij ∈ sj: Ii∪Ij=I ∧ Ii∩Ij = ∅. Each vertex from one of the subsets is connected
to other vertex in the other subset ek=(ini,inj) ∈ E′, ini∈ Ii ∧ inj∈ Ij . The weight
of each edge ωk is established with the degree of match (dom) between service input
concepts (ini and inj). To establish the degree of match we use the semantic distance
between the concepts described in [?].

DEFINITION 5 (Bipartite Graph Matching for Service Inputs) Given a Service Inputs
bipartite graph G=(Ii∪Ij ,E), its matching G′=(Ii∪Ij ,E′) E′ ⊆ E is a graph where
two edges can not share the same vertex and the sum of weights (ωk) of the edges in the
matching,

∑
ek∈E′

ωk is minimized.

Comentar el caso en el q el numero de entradas de los dos servicios no coincida.
Mirar otra forma de calcular la funcion match.

Algorithm 1 Join, where Ag is the new agent and S the system
function Join(Ag, S)
connections←ExpRandom(λ)
connected←False
dg← 0
while ¬connected ∧ dg ≤ connections do

Agr←random(S)
if sim(Ag, Agr)r ≥ UniRandom(0,1) then

"(Ag,Agr)
dg←dg+1
connected←True

end if
end while
end function

3. Leave

When an agent leave the system could be for three reasons: (i)the demand of the ser-
vice is not enough and the agent decide voluntary to leave the system, (ii)failure or
(iii)’sabotage’ (Hay mas situaciones?).

services. The similarity function sim(Agi, Agj), means the degree of similarity between
si and sj . It is defined as:

sim(Agi, Agj) = match(Ii, Ij) + match(Oi, Oj), (5)

where function match is a bipartite matching problem between semantic services.
Before explaining the bipartite matching problem, we define a bipartite graph. In our case
we have two bipartite graphs, one where the vertexes are the inputs of the services and
the other where the vertexes are the outputs. In the case of matching between the inputs
of the services (the process is the same for the outputs) the bipartite graph G=(Ii∪Ij , E)
has a set of vertexes with service si inputs (Ii) and the other set with sj inputs (Ij).

DEFINITION 4 (Weighted Bipartite Graph for Service Inputs) A Service Inputs bipartite
graph G=(I ,E) is a graph whose vertexes can be divided into two disjoint subsets Ii ∈
si and Ij ∈ sj: Ii∪Ij=I ∧ Ii∩Ij = ∅. Each vertex from one of the subsets is connected
to other vertex in the other subset ek=(ini,inj) ∈ E′, ini∈ Ii ∧ inj∈ Ij . The weight
of each edge ωk is established with the degree of match (dom) between service input
concepts (ini and inj). To establish the degree of match we use the semantic distance
between the concepts described in [?].

DEFINITION 5 (Bipartite Graph Matching for Service Inputs) Given a Service Inputs
bipartite graph G=(Ii∪Ij ,E), its matching G′=(Ii∪Ij ,E′) E′ ⊆ E is a graph where
two edges can not share the same vertex and the sum of weights (ωk) of the edges in the
matching,

∑
ek∈E′

ωk is minimized.

Comentar el caso en el q el numero de entradas de los dos servicios no coincida.
Mirar otra forma de calcular la funcion match.

Algorithm 1 Join, where Ag is the new agent and S the system
function Join(Ag, S)
connections←ExpRandom(λ)
connected←False
dg← 0
while ¬connected ∧ dg ≤ connections do

Agr←random(S)
if sim(Ag, Agr)r ≥ UniRandom(0,1) then

"(Ag,Agr)
dg←dg+1
connected←True

end if
end while
end function

3. Leave

When an agent leave the system could be for three reasons: (i)the demand of the ser-
vice is not enough and the agent decide voluntary to leave the system, (ii)failure or
(iii)’sabotage’ (Hay mas situaciones?).

services. The similarity function sim(Agi, Agj), means the degree of similarity between
si and sj . It is defined as:

sim(Agi, Agj) = match(Ii, Ij) + match(Oi, Oj), (5)

where function match is a bipartite matching problem between semantic services.
Before explaining the bipartite matching problem, we define a bipartite graph. In our case
we have two bipartite graphs, one where the vertexes are the inputs of the services and
the other where the vertexes are the outputs. In the case of matching between the inputs
of the services (the process is the same for the outputs) the bipartite graph G=(Ii∪Ij , E)
has a set of vertexes with service si inputs (Ii) and the other set with sj inputs (Ij).

DEFINITION 4 (Weighted Bipartite Graph for Service Inputs) A Service Inputs bipartite
graph G=(I ,E) is a graph whose vertexes can be divided into two disjoint subsets Ii ∈
si and Ij ∈ sj: Ii∪Ij=I ∧ Ii∩Ij = ∅. Each vertex from one of the subsets is connected
to other vertex in the other subset ek=(ini,inj) ∈ E′, ini∈ Ii ∧ inj∈ Ij . The weight
of each edge ωk is established with the degree of match (dom) between service input
concepts (ini and inj). To establish the degree of match we use the semantic distance
between the concepts described in [?].

DEFINITION 5 (Bipartite Graph Matching for Service Inputs) Given a Service Inputs
bipartite graph G=(Ii∪Ij ,E), its matching G′=(Ii∪Ij ,E′) E′ ⊆ E is a graph where
two edges can not share the same vertex and the sum of weights (ωk) of the edges in the
matching,

∑
ek∈E′

ωk is minimized.

Comentar el caso en el q el numero de entradas de los dos servicios no coincida.
Mirar otra forma de calcular la funcion match.

Algorithm 1 Join, where Ag is the new agent and S the system
function Join(Ag, S)
connections←ExpRandom(λ)
connected←False
dg← 0
while ¬connected ∧ dg ≤ connections do

Agr←random(S)
if sim(Ag, Agr)r ≥ UniRandom(0,1) then

"(Ag,Agr)
dg←dg+1
connected←True

end if
end while
end function

3. Leave

When an agent leave the system could be for three reasons: (i)the demand of the ser-
vice is not enough and the agent decide voluntary to leave the system, (ii)failure or
(iii)’sabotage’ (Hay mas situaciones?).

in1

in2

in3

in4

in5

in6

0.5

0.75

0.75

in1 in4

in5in2

in6in3

Fig. 1: Full connected Weighted Bipartite Graph for Service Inputs and Relaxed Weighted Match-
ing Bipartite Graph for Service Inputs

as WWW, electronic mail or citation graphs [20]. These networks are the result of a
growth process in which new nodes that join the system prefer to be connected to well
connected nodes.

Once the agent knows the number of connections, it should decide which agents
are going to be its neighbors. The probability of an agent ai to establish a connection
with agent aj is directly proportional to the homophily degree between the agents, if
the agents are more similar, they have more probability to be connected. This condi-
tion allows a new agent not only to establish ’short connections’ between agents with
similar roles and semantic services, but also between agents that are not similar (’long
connections’). The idea of ’long connections’ is to create short paths between groups
of agents that do not offer similar services and reduce the number of hops needed to
discover services. The probability to establish a connection between two agents Πai,aj

in the system is based on the homophily degree between them:

Πai,aj
= H(ai, aj) (5)

4.2 Leave

When an agent leave the system it could be for random failure in the network or de-
liberate attack or ’sabotage’. Periodically an agent sends a keep alive message to its
neighbors. The agent will notice that one of its links is broken whether after sending
a message, the time to receive an answer from the neighbor expires. In that case, the
agent deletes the neighbor from its neighbor list and establishes a new link with other
agent in the network to keep their degree (see Alg. 2 and Alg. 3).

Decentralized Semantic Service Discovery in MAS 7

Algorithm 1 Join, where a is the new agent and S the system
function Join(a, S)
connections←ExpRandom(λ)
connected←False
dg← 0
while ¬connected ∧ dg ≤ connections do
ar←random(S)
ifH(a, ar) ≥ UniRandom(0,1) then
`(a,ar)
a.dg←a.dg+1
updateNeighbors(a, ar)
connected←True

end if
end while
end function

Algorithm 2 Leave, where a is the agent and S the system
function Leave(a, S)
local
for ai ∈ a.N do
removeLink(a, ai)
newLink(ai,S)

end for
end function

Algorithm 3 newLink, where a is the agent and S the system
function Link(a, S)
connected←False
while ¬connected do
ar←random(S)
if sim(a, ar) ≥ UniRandom(0, 1) then
`(a,ar)
ar.dg←ar.dg+1
updateNeighbors(a, ar)
connected←True

end if
end while
end function

4.3 Search

DEFINITION 7 (Service discovery problem) Given a set of agentsA situated in a SDS=
(A,L), the service discovery problem is defined as a probabilistic decision-making task
in which an agent ai∈ A is looking for an agent aj∈ A, which offers the required
service st.

The search process in the system is based only on the agent local knowledge. When
the agent ai is looking for an agent aj which offers the required service st, ai selects

8 E. del Val, M. Rebollo, and V. Botti

which of its neighbors is the most appropriated to redirect the query instead of broadcast
the query to all the neighborhood. In many networks which reflects power-law charac-
teristics, the search is suggested to be based on degree. However, this makes that highly
connected nodes could be overloaded with requests. In our proposal the selection of the
most suitable agent is based on two criteria: agent degree and the semantic similarity
between agents services and roles. This proposal is based on the algorithm presented in
[5]. Until the target agent aj is found, all future agents involve in the discovery process
will make their decision similarly (see Alg. 4).

Πst
aiaj

= 1− (1−Πaiaj
)dg (6)

Algorithm 4 Search where as is the source agent, st is the required service and S the
system and Θ is the similarity threshold

function Search(as, st, S, Θ)
s←getService(as)
a←as

steps←0
while sim(s, st) ≥ Θ ∧ steps≤TTL do
pmax←0
for ai ∈ a.N do
dg← a.dg
s← a.s
p← 1− (1−H(a, ai))

dg

if p > pmax then
pmax← p
a← ai

end if
end for

end while
return a
end function

5 Simulation Results

The test can be divided in two groups. The first group compares the performance of typ-
ical distributed search strategies (degree, similarity, random) to the proposal presented
in this paper. The second test evaluates the fault tolerance of the SDS when relation-
ships between agents in the system are broken randomly (an agent leaves the system)
or following some patterns (which corresponds to deliberate failures ’sabotage’).

5.1 System Characterization

The experiments have been done in a set of networks that simulate the SDS structure.
These networks are preferential attachment networks and have generated as the result

Decentralized Semantic Service Discovery in MAS 9

of the join operation of agents. We have implemented two kind of networks: A where
the agents have not roles and Network B where each agent plays a role. We consider
10 types of different roles. Each network is composed of 1000 agents with one seman-
tic service each one. The services and roles have been assigned to the agents using a
uniform distribution.

5.2 Performance

In this section we evaluate the search operation in our SDS. Due to the similarities of
our system and p2p systems, we compared the search operation to other typical search
strategies used in p2p systems: random, degree, similarity, similarity and degree. We
have analyzed the behavior of each strategy in 5000 searches in networks A and B.

In figures 2a and 2b, the results obtained after the service search process are pre-
sented. We see that in general the strategies in a network with organizational informa-
tion have a better performance than the same strategies in a network without this infor-
mation. That shows that organizational information in the system can guide the search
process better than the systems that only provide information related to the degree and
services. Between all the strategies, the search operation that we present in this paper
has a better performance than the others. This is because it considers, apart form the
degree and semantic service information, the roles that agents play. This information
reduces the set of possible agents suitable to offer the service.

An important parameter to consider in SDS is the number of steps to reach the tar-
get agent. Figure 3a shows the mean path length obtained with each strategy in networks
with role information (B). In general, all the strategies return paths with more steps as
the number of agents in the network grows. When the size of the network is over 700
agents, the path length does not increase significantly. This shows that the structure of
the SDS is suitable for large-scale systems.

In Figure 3b the success rate of each search strategy in SDS is depicted. An obvious
result is that as the system scale increases, the percentage successful searches decreases.
The search operation presented here is the algorithm less influenced by the number of
agents in the system. In general, the search operation in the 80% of searches finds a
path between the source agent to the target agent.

5.3 Fault Tolerance

The last and very important check is the behavior of the SDS under failures. The prob-
lem appears when a broken link splits the system into two isolated parts, since some
agents will no longer be reachable. To analyze it, agent failures have been modelled
as a failure of all its connections. When some links are broken, an alternative path has
to be found. For random failures (see Fig.4a and Fig.4b), it can be observed that when
the number of deleted agents is from 10% to 30%, the path length increases, due to
there are alternative paths (with more steps) to find the agent with the required service.
When the number of deleted agents ranges from 30% to 50%, the network is divided in
several isolated parts. Only the searches inside the isle will success, so the number of
successful searches decreases and the path length decreases because the isle diameter
are smaller.

10 E. del Val, M. Rebollo, and V. Botti

 0

 50

 100

 150

 200

 250

 0 10 20 30 40 50 60 70 80 90 100

M
ea

n
Fr

ec
ue

nc
y

Path Length When Successful

EVN
Similarity-Based

Degree-Based
Random-Based

Similarity&Degree
Similarity
Degree
Random

Similarity&Degree
Similarity
Degree
Random

(a)

 0

 50

 100

 150

 200

 250

 0 10 20 30 40 50 60 70 80 90 100

M
ea

n
Fr

ec
ue

nc
y

Path Length When Successful

EEVN
Similarity-Based

Degree-Based
Random-Based

Search operation
Similarity
Degree
Random

Search operation
Similarity
Degree
Random

-based
-based

(b)

Fig. 2: Search performance without/with role information

An interesting case is what happens when a deliberate failure is provoked. In the
case of systems that follow a power-law, the worst case occurs when agents with high-
est degree (hubs) are disconnected. Figure 5a and 5b shows how ’sabotage’ affects the
performance of the search process. In this case, the path length increases due to only
a few highly connected hubs have been deleted and an alternative path exists. The per-
formance attending the number of successful searches decreases considerably as the
number of deleted hub increases.

6 Conclusions

The aim of this work is to provide an alternative to traditional approaches that deal
with the service discovery task in large-scale open SOMAS. Our proposal tries to over-
come drawbacks present in other centralized (bottlenecks, complexity, huge amount of
memory needed, global knowledge) and distributed (network traffic, congestion, coor-
dination effort, data consistency between distributed registries, update data) discovery
approaches. We consider that structures used in social networks facilitate the task of
locating agent services in a few steps using only local information. For that reason we
investigate the use of social networks as underlying structure of a service discovery
system. This structure is based on the concept of similarity between individuals, con-
sidering organization role and services, and uses semantics to calculate this similarity.
Furthermore, we provide several operations for the agents to be part of the system. An
evaluation of the search functionality compared to other traditional p2p strategies is also
provided. The behavior of the system under failure and ’sabotage’ circumstances have
been also evaluated. The results of the experiments show that the system is robust under
failure and that the search functionality performs well.

Decentralized Semantic Service Discovery in MAS 11

 15

 20

 25

 30

 35

 40

 45

 0 100 200 300 400 500 600 700 800 900 1000

M
ea

n
Pa

th
 L

en
gt

h

n agents

EEVN
EVN

Degree-Based
Similarity-Based
Random-Based

Search operation
EVN
Similarity
Degree

Similarity&Degree
Search
Similarity&Degree
Similarity
Degree

Search operation
Similarity&Degree
Degree
Similarity

(a)

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500 600 700 800 900 1000

%
 S

uc
ce

ss
fu

l S
ea

rc
he

s

n agents

EEVN
EVN

Degree-Based
Similarity-Based
Random-Based

Search operation
Similarity&Degree

(b)

Fig. 3: Mean path length and success

 26

 28

 30

 32

 34

 36

 38

 40

 42

 10 15 20 25 30 35 40 45 50

M
ea

n
Pa

th
 L

en
gt

h

% deleted agents

EEVN
EVN

Degree-Based
Similarity-Based
Random-Based

Search operation
Similarity&Degree

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 10 15 20 25 30 35 40 45 50

%
 s

uc
ce

ss
fu

l s
ea

rc
he

s

% deleted agents

EEVN
EVN

Degree-Based
Similarity-Based
Random-Based

Search operation
Similarity&Degree

(b)

Fig. 4: Mean path length and success with random failures

12 E. del Val, M. Rebollo, and V. Botti

 30

 32

 34

 36

 38

 40

 42

 2 4 6 8 10 12 14

M
ea

n
Pa

th
 L

en
gt

h

n deleted hubs

EEVN
EVN

Degree-Based
Similarity-Based
Random-Based

Search operation
Similarity&Degree

(a)

 10

 20

 30

 40

 50

 60

 70

 80

 90

 2 4 6 8 10 12 14

%
 s

uc
ce

ss
fu

l s
ea

rc
he

s

n deleted hubs

EEVN
EVN

Degree-Based
Similarity-Based
Random-Based

Search operation
Similarity&Degree

(b)

Fig. 5: Mean path length and success under ’sabotage’ conditions

Acknowledgment

This work is supported by TIN2009-13839-C03-01 and TIN2008-04446 projects,
CONSOLIDER-INGENIO 2010 under grant CSD2007-00022, FPU grant AP-2008-
00601 awarded to E. del Val.

References

1. A. L. Barabasi and R. Albert. Emergence of scaling in random networks. Science,
286(5439):509–512, October 1999.

2. E. Bircher and T. Braun. An Agent-Based Architecture for Service Discovery and Negotiation
in Wireless Networks. 2004.

3. Basit Chaudhry, Chris Marton, and Hana Shepherd. Homophily and structure in multiplex
networks.

4. Reuven Cohen and Shlomo Havlin. Scale-free networks are ultrasmall. Phys. Rev. Lett.,
90(5):058701, Feb 2003.

5. Özgür Şimşek and Jensen. Navigating networks by using homophily and degree. Proceed-
ings of the National Academy of Sciences, 2008.

6. J. Dang and M. Hungs. Concurrent Multiple-Issue Negotiation for Internet-Based Services.
2006.

7. S. Jha, P. Chalasani, O. Shehory, and K. Sycara. A formal treatment of distributed match-
making. In Proc. of the 2nd Int. Conference on Autonomous Agents, number Vol.3, pages
457–458, 1998.

8. M. Klusch, B. Fries, and K. Sycara. Automated semantic web service discovery with owls-
mx. In Proceedings of 5th International Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS), Hakodate, Japan, 2006.

9. M McPherson, Lynn Smith-Lovin, and James Cook. Birds of a feather: Homophily in social
networks. Annual Review of Sociology, 2001.

Decentralized Semantic Service Discovery in MAS 13

10. M. Moore and T. Suda. A decentralized and self-organizing discovery mechanism. In AINS,
2002.

11. S. Mullender and P. Vitanyi. Distributed Match-Making. 1988.
12. E. Ogston and S. Vassiliadis. Local distributed agent matchmaking. In Proceedings of the

9th International Conference on Cooperative Information Systems, 2001.
13. E. Ogston and S. Vassiliadis. Matchmaking among minimal agents without a facilitator. In

AAMAS, 2001.
14. A. Ouksel, Y. Babad, and T. Tesch. Matchmaking software agents in b2b markets. In

HICSS’04, 2004.
15. K. Sigdel, K. Bertels, B. Pourebrahimi, S. Vassiliadis, and L.S. Shuai. A framework for

adaptive matchmaking in distributed computing. In In proceeding of GRID Workshop, 2005.
16. K. Sycara and M. Klusch. Brokering and matchmaking for coordination of agent societies:

A survey. Coordination of Internet Agents: Models, Technologies and Applications, pages
197–224, 2001.

17. Katia Sycara, Matthias Klusch, Seth Wido, and Jianguo Lu. Dynamic service matchmaking
among agents in open information environments. SIGMOD Record, 28:47–53, 1999.

18. Jeffrey Travers and Stanley Milgram. An experimental study of the small world problem.
Sociometry, 32, 1969.

19. Yamini Upadrashta, Julita Vassileva, and Winfried Grassmann. Social networks in peer-to-
peer systems. paper presented at the. In 38th Hawaii International Conference on System
Sciences, pages 3–6, 2005.

20. Alexei Vázquez. Growing network with local rules: Preferential attachment, clustering hier-
archy, and degree correlations. Physical Review E, 67(5), May 2003.

21. Watts, Dodds, and Newman. Identity and search in social networks, 2002.
22. Hui Zhang, Ashish Goel, and Ramesh Govindan. Using the small-world model to improve

freenet performance, 2002.

