
A framework to guarantee time-bounded composed services

Elena del Val, Martí Navarro, Vicente Julián and Miguel Rebollo

Departamento de Sistemas Informáticos y Computación
Universidad Politécnica de Valencia

Camino de Vera s/n, 46022, Valencia, Spain
Email:{edelval, mnavarro, vinglada, mrebollo}@dsic.upv.es

Abstract

Time is an important non-functional parameter to con-
sider in service compositions, especially in environments
where a service must be provided before a deadline. This
paper presents a framework that deals with service com-
positions taking into account the service execution time. To
enhance this composition it is important to provide service
execution times with reliability, taking into account the
workload and availability of the service.

1. Introduction

Service Oriented Architectures (SOA) raises many chal-

lenging research issues, one of the most prominent being

web service composition. Web service composition ad-

dresses the situation in which a client request cannot be

satisfied by an available service, but by suitably combining

"parts of" available services. With automatic service compo-

sition, a repository of available services is searched for, and

compositions of services that meet some user defined criteria

are found. Often the criteria indicate some input and output

requeriments but there are proposals which also consider

QoS parameters in order to get a more suitable composition.

One of the most important parameters related to QoS is

service execution time. It is important to bear this in mind

because some composed services are completely useless if

they are not provided on time, mainly in enviroment with

temporal bounded processes. Currently, the majority of the

proposals [1][2][3][4] take time properties and constraints

into account, none of them provide mechanisms to guarantee

compliance with temporal contraints at execution time in

advance.

Thus, compositions of services must be carried out taking

temporal restrictions established by the client into account.

But, this is not enough to guarantee that these compositions

will not be fulfilled by the estimated time. It is necessary to

consider the service provider workload at the moment when

the client makes a request. So, in order to evaluate if an

initially suitable service composition is feasible, it is neces-

sary for each service provider to report about its availability

to deal with the request. To do it, the SAES (Search And

Execution Services) framework has been developed.

The sections of the paper are structured as follows: In

Section 2, a general description of the SAES framework is

presented. In Section 3, a module in charge of making the

composition Next, in Section 4, the module in charge of

consulting the execution time of the services is described.

Section 5 presents the Real-Time Service Provider.Section

6 shows tests, results and final remarks.

2. SAES Framework

SAES (Search And Execution Services) framework has

been developed in order to offer a mechanism for searching

for complex services that fullfil the client’s goal, bearing

in mind that the goal must be achieved before a maximum

time limit (deadline) established by the client. Therefore,

the SAES framework contacts service providers with the

intention of reserving the required services to achieve the

goal and ensure that the services are executed correctly and

on time. To provide these functions, the SAES is composed

of two modules (Figure 1):

• Service Composer Module (SC): It is in charge

of searches for service compositions which achieve

client’s goal. These compositions are based on theoret-

ical information contained in service descriptions.This

information does not consider the current workload in

the system.

• Commitment Manager Module (CM): This mod-

ule analyzes the service composition and the current

situation of services that compose it. Moreover, this

module monitors service execution in order to take it

into account service performances for similar future

situations.

Furthermore, in our system, the concept of Real-Time

Service Provider (RTSP) is introduced as a provider with

mechanisms that allow the execution and control of real-

time services (RT-services). The following sections describe

the modules that form the proposed SAES framework and

the Real-Time Service Provider in more detail.

2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology

978-0-7695-3801-3/09 $26.00 © 2009 IEEE

DOI 10.1109/WI-IAT.2009.75

434

Figure 1. SAES Framework

3. Service Composer Module

When a client request cannot be solved with a single

service, a possible solution is to automatically compose

several services. However, dynamic service composition

is a complex problem and it is not entirely clear which

techniques are the best. There are several proposals that use

techniques such as hypergraphs [5], modelchecking [6] or

planning [7] to deal with this problem.
Service composition describes a service as a process

in terms of inputs, outputs, preconditions and effects. In

Artificial Intelligence Planning a service is described with

the metaphor of an action and composition can be viewed

as a planning problem.
In SAES, the SC provides a service composition (or a

set of service compositions) which satisfies the goal and the

client’s deadline. To do this, the SC considers the execution

time of services and employs AI planning techniques to

automate this process. Basically, the idea is to translate real-

time service descriptions to a PDDL durative actions in

order to generate a plan. The CSM has three components: (i)

Service Translator which is responsible for translating real-

time service descriptions into PDDL 2.1 durative actions[8]

(ii) Problem Translator responsible for translating the client

query into a PDDL 2.1 problem and (iii) Composer takes

as input a PDDL 2.1 problem and provides a set of plans

which represent service compositions.
Before explaining how the SC works, the description of

a real-time service is presented.

3.1. Real-Time Service Description

The concept of real-time sometimes generates confusion.

In some situations, real-time applications are interpreted

as on-line applications, but in our context, a real-time

application means an action that responds to an external

event in a timely and predictable manner. Therefore, a real-

time service (RT-service) is a service which has its service

execution time bounded. The service description of a RT-

service, apart from the usual information related to Inputs,

Outputs, Preconditions and Effects (IOPEs), should contain

an explicit representation of time as a non-functional param-

eter. This parameter facilitates the selection task between a

set of services that offer the same functionality.

In order to offer this information, an OWL-S service

description, extended with non-functional parameters, has

been used (see Figure 2). This description introduces a

non-functional parameter which represents service execution

time. The value of the service execution time is represented

by an average execution time. This execution time is ob-

tained by measuring the cost of the service off-line. Besides

that, preconditions and effects are time-stamped annotated.

<Duration_param:hasLocal>
<duration:Duration-Expression rdf:ID="PDDXML-Duration">
<expr:expressionBody rdf:datatype="http://...#string">
<and><equals>
<variable><var type="object">?duration</var></variable>
<constant><const type="int">8</const></constant>

</equals></and>
</expr:expressionBody>

</duration:Duration-Expression>
</Duration_param:hasLocal>

...
<process:hasPrecondition>
<pddxml:PDDXML-Condition rdf:ID="PDDXML-Precondition">
<expr:expressionBody rdf:datatype="http://...#string">

<and><atStart><not>
<pred name="agentHasKnowledgeAbout">
<param>?http://.../Packing/GetItems.owl#FinishEvent</param>

</pred>
</not></atStart></and>

</expr:expressionBody>
</pddxml:PDDXML-Condition>

</process:hasPrecondition>

Figure 2. Non-functional parameter duration and tem-
poral precondition

3.2. Composing Temporal Services

Basically, the SC works as follows. When a RT-service

is registered in the system, the SC takes its description and

sends it to the Service Translator. The Service Translator
is responsible for translating RT-service descriptions into

PDDL 2.1 durative actions. Once the services are modeled as

actions, it generates a PDDL domain file which contains the

definition of the actions structured as a planning problem.

This process is an extension of a converter presented by

Klusch and Gerber [9] which is limited to dealing with

services without time-stamped annotations. When a client

query arrives the composition process starts. The client query

is an OWL document which contains the information related

to the inputs of the desired service and the goals (outputs)

435

to be achieved. This file is sent to the Problem Translator
which translates the OWL file into an equivalent one in

PDDL 2.1 language.

Once the service composition problem has been translated

into a planning problem, the domain and problem files in

PDDL 2.1 are sent to the Composition Service. This service

contains a planner which deals with PDDL 2.1 language

and considers time as a parameter to optimize the plans.

Any planner which deals with PDDL 2.1 can be used. In

this proposal the planner is only used as a tool for obtaining

service compositions. It is not a goal of this work to study

in-depth the use of planners for service composition. The

task of the planner is to obtain a plan which represents a

service composition sequence that satisfies the client’s goal

before a deadline.

The Composition Service continues searching for plans

until the CM sends the SC a message to finish the search

process because a previous plan has been accepted. Besides

this, the Composition Service obviously stops if no more

plans are found.

4. Commitment Manager Module

The CM has two main functions: (i) to check if the set

of services offered as a solution by the SC will be available

to fulfill the client request; and (ii) when the client selects a

service composition, the CM must establish a commitment

relationship with the RTSPs that the selected RT-services

provide.

To fulfill the first function, the CM must communicate

with all of the RTSPs that offer services involved in the

composition. Each RTSP analyzes if the required RT-service

can be executed on time considering the current workload

and the success probability associated to it. The result of

this analyses is returned to CM. The result consists of a

tuple < Tstart, Tduration, SP > where Tstart indicates the

moment when the service can start its execution, Tduration

indicates the necessary time to complete the service and SP
is the probability of a successful execution. Moreover, a pre-

commitment between the RTSP and the CM is established.

This pre-commitment forces the RTSP to reserve the re-

quired time and other necessary resources to execute the

service until the client decides if the service composition

is to be executed. Of course, the clients have a maximum

time to take this decision. If this reservation is not made,

the required time or some of the resources could be used to

deal with another client request, and therefore the guaranteed

execution time of the composed service by the CM could

be compromised.

When all RTSPs have responded to the CM, considering

the information that the RTSPs provide, checks that the

service composition can be executed before the client dead-

line. Then, the CM must calculate the success probability

associated to the service composition. To do this, the CM

uses the success probability sent for all RTSPs weighted with

the information from previous executions of similar services.

The service composition success probability is calculated as

follows:

SPcomposition =
N∏

i=0

SPi ∗ ωi (1)

Where ωi ∈ [0, 1] is the weight associated to the service

i. This weight is related to the previously fulfilled commit-

ments; A RTSP which has many unfulfilled commitments

will have a low weight.

Once the CM calculates the service composition success

probability, it sends the client the composed service and its

probability (SPcomposition). The client analyzes if it is a

suitable composition. If the client agrees with the service

composition, the client communicates to CM that the RT-

service executions can start. When this is the case, the

pre-commitments established with the RTSPs are confirmed

by the CM and the RTSPs execute the corresponding RT-

services. If the client does not agree with the service

composition, the CM breaks the pre-commitments, freeing

the time slack reserved by the RTSPs.

The CM is also in charge of ensuring that the acquired

commitments are fulfilled. In cases where a commitment

cannot be fulfilled, the CM penalizes the RTSP which

provides the service. This penalty is captured through the

weights applied when the CM calculates the service com-

position success probability in future situations.

So far, the main SAES framework components have been

described. In the next section the funcionality of the RTSP

is introduced.

5. Real-Time Service Provider

As previously pointed out, the RTSP is in charge of

executing the RT-services. Besides this, the RTSP analyzes

when a RT-service can be executed considering the RTSP

workload. In order to develop and execute RT-services a

Real-Time Operating System (RTOS) is necessary (see Fig-

ure 2). More specifically, the RTOS used in this architecture

is Suse Linux Enterprise Real-Time 10. To develop the RTSP

and the RT-services, the Real-Time Java Language has been

used as a suitable language for expressing temporal features

is necessary. The RT-services are running on the Apache-

Tomcat server with Axis2.

Otherwise, prior to performing the analysis, it is necessary

to make an estimation of the temporal cost of the RT-

service execution. To make this estimation, each RTSP

incorporates a module, called Temporal Constraint Manager.

This module is able to make an accurate prediction of

the service execution time using information from previous

service executions. For more details about the Temporal
Constraint Manager module you can consult [10].

436

6. Tests and Results

Several simulation experiments have been carried out to

monitor the behavior of the system and evaluate the incor-

poration of the CM into the SAES framework in order to

provide the clients feasible plans. The experiments basically

consist of launching a set of client requests to the SAES,

including the CM or not.

The points to be analyzed from the results obtained after

executing the tests are: (i) the number of client requests that

can be attended with a positive answer (service composition)

(ii) once the SAES provides a suitable service composition,

to check if the composition provided has been carried out

successfully.

In Figure 3 the behavior of the SAES, including the CM

or not, is compared. On this graph it can be seen that SAES

with the CM provides a lower number of answers (service

compositions) than the SAES without the CM. The reason

is that the SAES with CM rejects some of the compositions

provided by the SC because this configuration takes into

account not only the composition suitability but also the

service provider availability.

In Figure 4 the percentage of successfully accepted plans,

in both SAES configurations(with CM and without it), is

shown. This graph reflects that once the client has accepted

a service composition provided by SAES with CM, the

probability of service composition success is higher than

the SAES without the CM. Obviously, this is because the

CM first checks the providers current availability.

��

��

��

��

��

��

���

	

���
	

��
�� �
�

��
� �

�

��

��

��

� � � � � � � � � �� �� �� �� �� ��

��
	
��

��������� !� "#$%&'$ ())

� !� "#$% ())

Figure 3. Number of service compositions provided by
SAES including the CMM or not.

Acknowledgment

This work is supported by TIN2005-03395 and TIN2006-

14630-C03-01 projects of the Spanish government, FEDER

funds and CONSOLIDER-INGENIO 2010 under grant

CSD2007-00022.

��

��

��

��

��

��

���

	

���
� �
		

��

�
�� �
��

�

��

��

��

� � � � � � � � � �� �� �� �� �� ��

��
	 	

������������ !"#$%" &''

���� !"# &''

Figure 4. Execution success of the service composi-
tions provided by SAES including the CMM or not.

References

[1] Pan, F.: Temporal aggregates for web services on the semantic
web. Web Services, IEEE International Conference on 0
(2005) 831–832

[2] Martín-Díaz, O., Cortés, A.R., Durán, A., Müller, C.: An
approach to temporal-aware procurement of web services. In:
ICSOC. (2005) 170–184

[3] Naseri, M., Towhidi, A.: Qos-aware automatic composition
of web services using ai planners. In: ICIW ’07: Proceedings
of the Second International Conference on Internet and Web
Applications and Services, Washington, DC, USA, IEEE
Computer Society (2007) 29

[4] Fernández-Olivares, J., Garzón, T., Castillo, L., García-Pérez,
O., Palao, F.: A middle-ware for the automated composition
and invocation of semantic web services based on temporal
htn planning techniques. (2007) 70–79

[5] Benatallah, B., Hacid, M.S., Rey, C., Toumani, F.: Request
rewriting-based web service discovery. In: International
Semantic Web Conference. (2003) 242–257

[6] Gao, C., Liu, R., Song, Y., Chen, H.: A model checking
tool embedded into services composition environment. In:
GCC ’06: Proceedings of the Fifth International Conference
on Grid and Cooperative Computing (GCC’06), Washington,
DC, USA, IEEE Computer Society (2006) 355–362

[7] Carman, M., Serafini, L., PaoloTraverso: Web service com-
position as planning. In: CAPS’03 Workshop on Planning for
Web Services. (2003)

[8] Fox, M., Long, D.: Pddl2.1: An extension to pddl for
expressing temporal planning domains. J. Artif. Intell. Res.
(JAIR) 20 (2003) 61–124

[9] Klusch, M., Gerber, A.: Semantic web service composition
planning with owls-xplan. In: In Proceedings of the 1st Int.
AAAI Fall Symposium on Agents and the Semantic Web.
(2005) 55–62

[10] Navarro, M., amb M. Rebollo, E.D.V., Julian, V.: Composing
and ensuring time-bounded agent services. In: IWANN’09.
(2009) 553–560

437

