
Ensuring time in service composition

E. del Val, M. Navarro, V. Julian and M. Rebollo
Departamento de sistemas informáticos y computación

Universidad Politécnica de Valencia
Camino de Vera S/N

46022 Valencia (Spain)
{edelval,mnavarro,vinglada,mrebollo}@dsic.upv.es

Abstract

Time is an important non-functional parameter to
consider in service compositions, especially in
environments where a service must be provided before a
deadline. This paper presents a framework that deals with
service compositions taking into account the service
execution time. To enhance this composition it is
important to provide service execution times with
reliability, bearing in mind the workload and availability
of the service.

1. Introduction

Service Oriented Architectures (SOA) are composed of
groups of independent services that communicate or
interact with each other. Services can be considered auto-
contained pieces of autonomous code that provide their
'clients' with basic functionalities. SOA [1] is the base of
current computation models such as grid [2] and cloud
computing [3].

One of the main problems of SOA is how to create
added-value services dynamically by composing elemental
services. Services can be seen as elemental instructions
and they are commonly used by human developers to
create bigger systems. Semantic annotations help
machines to deal with services, but service discovery and
composition are complex tasks that need extra intelligence
doses to achieve proper results, especially in open and
dynamic environments where services are not always
available.

Expressive languages [4][5][6][7] have been used to
describe services and to deal with complex services
composition. A drawback common to all standard service
description languages is the impossibility of modeling
how time pass in the system. Some approaches have been
done to include temporal service information to enrich
semantic descriptions [8][9][10]. This information is
important to consider due to some services could be
completely useless if they are not provided on time. For
this reason, the temporal cost associated to the service
execution should be known and service descriptions

should contain it. It is possible to define a real-time
service as a service with temporal restrictions in its
execution. A real-time service must be executed over a
service provider with the capability to execute real-time
tasks in order to guarantee the fulfillment of the temporal
restrictions.

 In this way, compositions of real-time services must be
realized taking into account temporal restrictions
established by the client. But, this is not enough to
guarantee that these compositions would be fulfilled on a
estimated time. It is necessary to consider a service
provider workload at the moment when a client makes a
request. It could be possible that if a service provider is
already executing several services, probably it does not
have enough time to attend a new request and therefore
the service composition could not be possible. So, in order
to evaluate if an initially suitable service composition is
feasible, it is necessary that each service provider informs
about its availability to attend the request.

This paper presents SAES (Search And Execution
Services) framework which allows to compose services
and to ensure their fulfillment on time. To do that, the
service considers the current workload and the availability
of the real-time service providers.

The sections of the paper are structured as follows: In
Section 2, a general description of the SAES framework is
presented. In Section 3, a module in charge of making the
composition and a planning technique for dealing with the
service composition is presented. Furthermore, a temporal
extension for OWL-S descriptions is shown. Next, in
Section 4, the module in charge of consulting the
execution time of the services is described. Section 5
presents the Real-Time Service Provider which is in
charge of executing real-time services. Section 6 shows an
example of the SAES being used. Finally, conclusions and
final remarks are presented in Section 7.

2. SAES Framework

To ensure the correct service composition and also that
the goal expected by the client is satisfied within the
deadline the SAES (Search And Execution Services)
framework has been developed. SAES is a framework

2009 Congress on Services - I

978-0-7695-3708-5/09 $25.00 © 2009 IEEE

DOI 10.1109/SERVICES-I.2009.91

376

which allows a client to search complex services that
satisfy its requirements and to guarantee its execution in a
maximum time (deadline) established by the client. To
fulfill these functions, the SAES is composed of two
modules (Figure 1):

Figure 1. SAES Framework

 Service Composer Module: The Service

Composer Module (SC) has as objective to get
service compositions which fulfill a set of
constrains. These compositions are based on
theoretical information without taking services
current situation into account (workload, shared
resources availability).

 Commitment Manager Module: This module
analyzes the service composition and the current
situation of services that compose it. The
Commitment Manager Module (CM) checks if a
service composition is feasible and whether it
can be executed on time. Moreover, this module
monitors service execution in order to take it into
account the observed performance for similar
future situations.

Furthermore, service providers must have mechanisms to
analyze whether tasks associated with the service can be
executed within the deadline. Besides that, providers
should be able to detect missed deadlines. In other words,
providers should be able to offer temporal-bounded
services. So, in our system, the concept of Real-Time
Service Provider (RTSP) is introduced as a provider with
mechanisms that allow the execution and control of
temporal-bounded services. The SAES works as follows:

1. Initially a client sends a query to determine if
there is a set of services which could satisfy a
goal before a deadline established by the client.

2. The request is received by the SC, which starts
the search process. The aim of this process is to
find service compositions which fulfill the
client's goals taking into account the temporal
restriction established by client. To consider
service execution time in this process, service

descriptions are extended with service durations
as a non-functional parameter.

3. When a service composition is obtained, the SC
sends it to the CM and continues searching for
more alternatives. This search will continue until
the SC receives a message from the CM to finish
the search process. The search process can also
finish when more compositions are not found.

4. After that, the CM queries each RTSP involved
in the service composition asking for the
provider's availability to execute the service.

5. Each RTSP analyzes the service execution time
according to its current workload and returns it to
the CM.

6. The CM establishes pre-commitments with the
RTSPs involved in order to reserve the slack
time for the service during a period of time. The
CM sends the resulting service composition to
the client with a success probability.

7. If the client agrees with the service composition,
the CM confirms commitments with the RTSP
involved. Otherwise, the client sends a message
rejecting the service composition and the CM
breaks the established pre-commitments with the
RTSPs.

8. Once service executions start, the CM monitors
the fulfillment of the committed real-time
services. When a service ends its execution, the
CM stores the execution time in order to take it
into account in future queries. Should the RTSP
not fulfill its commitment, it will be penalized.

The following sections describe the modules that form
the proposed SAES framework and the Real-Time Service
Provider in more detail.

3. Service Composer Module

If the client requirement cannot be solved only with a
service, then a possible solution is to automatically
compose several services in a sequence. However,
dynamic service composition is a complex problem and it
is not entirely clear which techniques are the best. There
are several proposals that use techniques such as
hypergraphs [11][12], modelchecking [13][14] or
planning [15][16][17][18][19] to deal with this problem.

Service composition as planning describes a service as
a process in terms of inputs, outputs, preconditions and
effects. Using the metaphor of an action, composition can
be viewed as a planning problem. An important benefit of
the planning approach is the use of knowledge that has
been accumulated over years of research in the field of
planning. Therefore, well know planning algorithms,
techniques and tools can be used to take advantage of
efficient and seamless service composition. The desired

377

outcome of the service is described as a goal state, while
simple services play the role of planning operators or
actions. The planner is then responsible for finding an
appropriate plan (sequence of services) to achieve the goal
state.

In SAES, the SC provides a service composition (or a
set of service compositions) which satisfies the goal and
the time deadline established by the client. To do this, the
SC considers the execution time of services and employs
Artificial Intelligence planning techniques to automate
this process. Basically, the idea is to translate OWL-S
service descriptions temporally annotated to PDDL
durative actions in order to generate a plan.
The SC is composed by three components:

 Service Translator Service: Responsible for
translating OWL-S service descriptions extended
with a duration non-functional parameter into
PDDL 2.1 durative actions [20].

 Problem Translator Service: Responsible for
translating the client query into a PDDL 2.1
problem description.

 Composition Service: Takes as input a PDDL
2.1 problem and provides a set of plans which
represent service compositions that satisfy the
client's request and temporal constraints.

Before explaining how the SC works, the OWL-S service
description extension to consider service estimated
execution time is presented.

3.1 Temporal Extension in OWL-S Service
Descriptions

A common drawback to standard service description
languages is the impossibility of modeling how time pass
in the system. There are some proposals that try to include
temporal service information to enrich semantic
descriptions using non-functional parameters [8] or
techniques based on Interval Temporal Logic (ITL)
[9][10]. Some services could be completely useless if they
are not provided on time. For doing that, time is an
important factor for services and might be taken into
account.

The execution time of a service should be expressed in
its service description. Service descriptions in SAES are
expressed in terms of OWL-S, which has been extended to
include temporal information. This extension consists of a
new non-functional parameter which represents service
time execution. Besides that, preconditions and effects are
time-stamped annotated.

Duration. Service duration is represented by a non-
functional parameter called duration which represents the
service time execution. This parameter is a PDDXML
expression that contains a value assignment to the variable
duration. PDDXML [21] is a XML dialect of PDDL that

simplifies parsing, reading, and communication PDDL
descriptions using SOAP.

<Duration_param:hasLocal>
 <duration:Duration-Expression rdf:ID="PDDXML-Duration">
 <expr:expressionBody
rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
 <and><equals>
 <variable><var type="object">?duration</var></variable>
 <constant><const type="int">8</const></constant>
 </equals></and>
 </expr:expressionBody>
 </duration:Duration-Expression>
 </Duration_param:hasLocal>
...
<process:hasPrecondition>
 <pddxml:PDDXML-Condition rdf:ID="PDDXML-Precondition">
 <expr:expressionBody
rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
 <and><atStart><not>
 <pred name="agentHasKnowledgeAbout">
 <param>?http://.../Packing/GetItems.owl#FinishEvent</param>
 </pred>
 </not></atStart></and>
 </expr:expressionBody>
 </pddxml:PDDXML-Condition>
</process:hasPrecondition>

Figure 2. Non-functional parameter duration and temporal

precondition

Preconditions. The annotation of a precondition
makes it explicit whether the associated proposition must
hold:

 at the start of the interval (the point at which the
service is applied)

 at the end of the interval (the point at which the
final effects of the service are asserted)

 over the interval from the start to the end
(invariant over the duration of the service)

The preconditions in the OWL-S document are also
PDDXML expressions (Figure 2).

Effects. The annotation of an effect makes it explicit
whether the effect is immediate (it happens at the start of
the interval) or delayed (it happens at the end of the
interval). No other time points are accessible, so all
discrete activity takes place at the identified start and
end points of the service. Service effects are PDDXML
expressions in the OWL-S document.

Preconditions, effects and duration parameters that
appear in the OWL-S description will be translated into
preconditions, effects and duration in a PDDL 2.1 action.
The Composition Service will consider them in the
composition process.

3.2 Composing Temporal Services

Basically, the SC works as follows. When a service is
registered in the system, the SC takes the OWL-S service
description and sends it to the Service Translator. The

378

Service Translator is responsible for translating OWL-S
descriptions into PDDL 2.1 durative actions. Once the
Composition Service has the services modeled as actions,
it generates a PDDL domain file which contains the
definition of the actions structured as a planning problem.
This process is an extension of a converter presented by
Klusch and Gerber [21] which is limited to dealing with
services that are not time-stamped annotated.

When a query arrives at the SC the composition
process starts. The client query is an OWL document that
contains the information related to the inputs of the
desired service and the goals (outputs) to be achieved.
This file is sent to the Problem Translator to be
translated. First, the Problem Translator translates the
OWL file into an equivalent one in PDDL 2.1 language.

Once the service composition problem has been
translated into a planning problem by the Problem
Translator, the domain and problem files in PDDL 2.1 are
sent to the Composition Service. The Composition Service
is a planner which deals with PDDL 2.1 language and it
have to consider time as a parameter to optimize the plans.
In this proposal the planner is only used as a tool for
obtaining service compositions. It is not a goal of this
work to study in-depth the use of planning for service
composition. This planner obtains a plan composed of
actions (services) with their initially estimated duration
and the total estimated time of the plan. The plan
represents a service composition sequence that satisfies
the goal considering temporal annotations. The
Composition Service will continue searching for plans
until the CM sends the SC a message to finish the search
process because a previous plan has been accepted.
Besides this, the Composition Service stops if no more
plans are found.

4. Commitment Manager Module

The CM has two main functions: (i) to check if the set
of services offered as a solution by the SC will be
available to fulfill the request; and (ii) when the client
select a service composition, the CM must establish a
commitment relationship with the RTSPs that the selected
services provide. Besides, a RTSP must control that its
own services will be executed correctly (achieve its
commitments).

To fulfill the first function, the CM must communicate
with all of the RTSPs that offer the services involved in
the composed service. Each RTSP analyzes when it can
complete the service for the CM and it returns the result to
CM. The result consists of a tuple <Tstart,Tduration,SP>
where Tstart indicates the moment when the service can
start its execution, Tduration indicates the necessary time to
complete the service and SP is the probability of a

successful execution. Moreover, a pre-commitment
between the RTSP and the CM is established.

When all RTSPs have responded to the CM, it must
calculate the success probability associated to the whole
service composition. For doing that, the CM uses the
success probability sent for all RTSPs weighted with the
information of previous executions of similar services.
The service composition success probability is calculated
as follows:

i

N

i
incom positio SPSP *

0

where]1,0[i is the weight associated to the service i.
This weight is related to the previously fulfilled
commitments; A RTSP who has many unfulfilled
commitments will have a low weight.

Once the CM calculates the service composition
success probability, it sends the client the composed
service and its probability SPcomposition. The client analyzes
if it is a suitable composition. If the client agrees with the
service composition, the client communicates to CM that
the service executions can start. When this is the case, the
pre-commitments established with the RTSPs are
confirmed by the CM. If the client does not agree with the
service composition, the CM breaks the pre-commitments,
freeing the slack reserved by the RTSPs.

The CM is also in charge of ensuring that the acquired
commitments are fulfilled. In case where a commitment
cannot be fulfilled, the CM penalizes the RTSP which
provides the service. This penalty is captured through the
weights applied when the CM calculates the service
composition success probability.

5. Real-Time Service Provider

As previously pointed out, the RTSP is in charge of
executing the real-time services. Besides this, the RTSP
analyzes when a service can be executed without
exceeding the maximum time proposed by the client. In
Figure 3, the architecture of the Real-Time Service
Provider is shown. In order to guarantee the correct
execution of services offered by RTSP, it is necessary that
the RTSP runs over a Real-Time Operating System
(RTOS). Otherwise, the system behavior becomes
unpredictable and the RTSP loses the ability to analyze
whether it can commit to perform a service within a
deadline.

379

Figure 3. Real-time service provider architecture

To determine whether a service can be executed on

time, it is necessary to know the execution time for each
service. In some cases, the execution time of the service is
known and limited. In these cases to determine the
necessary tasks to fulfill the service and the maximum
time needed to perform it is relatively easy using well-
known scheduling techniques [22] [23].

Otherwise, there are services for which to calculate the
needed execution time is not possible. In this type of
services, a time estimation is the unique measure that can
be made. In order to do this estimation, each provider that
offers real-time services incorporates a module, called
Temporal Constraint Manager (TCM). This module, using
previous experiences, is able to make an accurate
prediction of whether a service will be completed within
the time specified by the CM.

5.1 Temporal Constraint Manager

The Temporal Constraint Manager (TCM) is a module
inside the RTSP that must decide if it can commit to
perform a specific real-time service. A possible way of
performing such decision-making functionality is to use a
Case-Based Reasoning (CBR) approach, which adapts
previous problem solving cases to cope with current
similar problems [24]. Therefore, in the absence of
unpredictable circumstances, we assume that an agent can
commit itself to perform a service within certain time if it
has already succeeded in doing so in a similar situation
(CPU utilization, resources and service availability). To
carry out the decision-making about contracting or not a
commitment, the TCM has been enhanced with a RT-CBR
(Real-Time CBR), following a soft Real-Time approach.
This RT-CBR incorporates a temporal-bounded decision
process that estimates the time that a service performance
could entail. This task is carried out using the time spent
in performing similar services.

The classical CBR cycle consists of four steps:
Retrieve, Reuse, Revise and Retain. A CBR Retrieves

similar experiences from a case-base, reuses the
knowledge acquired in them, revises such knowledge to fit
the current situation and, finally, retains the knowledge
learnt from this problem-solving process. In our
framework, the CBR phases must observe soft real-time
constraints and thus, its execution time must be bounded.
Otherwise, the RT-CBR could provide the TCM with
useless time estimations about services whose deadline
have already expired.

To bound the response time of the TCM, the RT-CBR
case-base must have an structure that eases the case
retrieval. Anyway, independently of the choice made
about the indexation, the temporal cost of most retrieval
(and reuse) algorithms depend on size of the case-base.
This entails to specify a maximum number of cases that
can be stored in the case-base and to perform a constant
maintenance and updating of the information stored. Each
agent that offers real-time services must have a specific
implementation of its RT-CBR taking into account its
application domain.

Figure 4 shows the execution phases of the TCM. The
module is launched when the agent begins its execution.
At the beginning, the TCM controls if a new service
request has arrived (Figure 5). If the new request is a
service request where the service execution time is not
known, the TCM must estimate the time required to
execute that service. It is necessary to determine if the
service can be completed before the deadline specified in
the request. When the estimated time is obtained and the
provider confirms that it is possible to execute the service,
the necessary tasks to perform the service must be
analyzed at low-level using a real-time scheduler. The
worst-case execution time of each phase of the TCM is
known and, therefore, the phases are temporal bounded.
This feature is crucial to allow the TCM to have a precise
time control of each execution phase. As it can be seen in
Figure 4, the TCM execution is cyclical. When there is no
request, the manager can employ its idle time to perform
the revision and retention phases in order to learn about
experiences.

Figure 4. Temporal constraints manager algorithm

380

Figure 5. Service analysis state

6. Example: Packing Cell

In order to illustrate this proposal, an example in a
manufacturing environment is presented. Our proposal is
suitable for manufacturing systems as they have been
facing a continuous change over the last few years. Rapid
static and hierarchical manufacturing systems will give
way to systems that are more adaptable to rapid changes.
Moreover, the diversity of customers' demands is
increasing. This situation makes the system change the
configuration of the manufacturing cell in a dynamic way
with the arrival of new product demands. All of these
factors result in the requirement for manufacturing to be
more efficient and time-critical in order to bring in new
products at the right time.

6.1 System Description

The scenario in which to apply the presented proposal
is a packing cell. The packing cell supplies gift boxes
with a set of products inside [25]. The possible actions in
this cell are presented as services offered by entities. The
aim of this cell is: to find the least time consuming service
composition in order to respond to the arrival of a rush
order.

The packing cell is composed of five types of RTSPs:
DockingStation, Robot, Order, Storage and Wrapper.
Each RTSP has associated services (Table 1) that
represent the tasks that the entity can carry out. The
configuration of the different entities available in the cell
depends on the client product demand order. If the order
received is a rush order with temporal constraints, it is
possible that not all of the services provided by the RTSPs
will be able to accomplish their activities before a
deadline. In other situations, a service offered by an RTSP
may not be available due to it being busy attending other
client orders.

In this scenario, each RTSP is executed over a real-
time operating system (Suse Linux Enterprise Real-Time
10) in independent machines. To execute services is

necessary a real-time virtual machine (Sun Java Real-
Time system) due to the fact the services are implemented
using a RT-Java (Real-Time Java Specification version
1.1).

Table 1. Available services in the PackingCell system

In order to illustrate how the SAES works a trace of

this packing cell system is presented. First of all, the
registered services are translated into PDDL durative
actions by the Service Translator. Once the services are
modeled as actions, the Service Translator generates a
PDDL domain file which contains the actions, structured
as a planning problem. In this example, the SAES client is
the manufacturing manager which controls the cell
configuration. When a new configuration is needed, due to
a new product demand, the manager sends a request to the
SAES. The request contains the I/O's that the service
should have. In this example a possible service request
could be described with: (i) inputs: ShuttleEvent and
OrderEvent and (ii) output: PackageCode. Furthermore,
the manager could establish a temporal restriction,
requiring the service to be provided in 30 time units.

6.2 Packing Cell System Trace.

Considering the previous situation, the sequence of the

next steps are described. First, the manager request is
translated by the SC into a PDDL problem description. At
that point, the domain and problem descriptions are
available. This information would be sent to the
Composer Service. Then, the Composer Service starts to
find service compositions (plans) that fulfill the client
request and time constraints.

The first plan found is the plan presented in Figure 6.
The solution is a possible configuration of six services to
fulfill the client request. Each service is associated to its
estimated execution time. The estimated execution time
for the composition is 23 time units.

This solution would be sent to the CM. The Composer
Service would continue searching for plans until no more
possible plans exist or until the CM sends the SC a

381

message to finish the search process. This situation occurs
when a previous service composition has been accepted
by the client.

Time:<ACTION, PARAMETERS> [action duration; action cost]
0.0003: (LOCKSHUTTLESERVICE ARRIVAL ORDER LOCKSHUTTLEFLAG
NOTIFICATIONEVENT) [3]
3.0005: (GETORDERSERVICE NOTIFICATIONEVENT ITEMTYPELIST
ORDERCODE) [4]
7.0008: (QUERYCARRIERSANDSTORAGESERVICE ITEMTYPELIST
MATERIALSTOCK) [8]
15.0010: (GETITEMSSERVICE MATERIALSTOCK ITEMTYPELIST
NOTIFICATIONEVENT FINISHEVENT) [8]
23.0012: (SENDORDERSERVICE ORDERCODE FINISHEVENT
PACKAGECODE) [3]
23.0015: (UNLOCKSHUTTLESERVICE LOCKSHUTTLE FLAG
FINISHEVENT UNLOCKSHUTTLEFLAG) [2]
Actions: 6 Execution cost: 6.00 Duration:23.000 Plan quality:23.000

Figure 6. Sequence of services of the first plan

After the composition is sent to the CM, the CM gets
through to the providers that appear in the composition
and consults them about: their execution time, the start
time and the success probability. With this information the
CM checks if the composition satisfies the client temporal
constraint. One of the possible situations that could arise
is that a service could be busy executing previous
requests. To illustrate this situation, the service
"querycarrierandstorageservice" is supposed to have a
high workload as it is busy executing previous requests.
Therefore, the service needs more time units to deal with
the new request. So, the number of time units needed to
execute the composition is greater than the assigned time
to complete the client goal.

The CM calculates the total execution time taking into
account the current service workload. This time is higher
than the client temporal constraint so the service
composition is dismissed. The CM communicates to SC
that it needs another composition. The SC gives CM a
second service composition solution that consists of six
services and the total estimated execution time is 19
(Figure 7).

Time:<ACTION, PARAMETERS> [action duration; action cost]
0.0003: (LOCKSHUTTLESERVICE ARRIVAL ORDER LOCKSHUTTLEFLAG
NOTIFICATIONEVENT) [3]
3.0005: (GETORDERSERVICE NOTIFICATIONEVENT ITEMTYPELIST
ORDERCODE) [4]
7.0008: (QUERYSTORAGESERVICE ITEMTYPELIST MATERIALSTOCK)[4]
11.0010: (GETITEMSOPSERVICE NOTIFICATIONEVENT
MATERIALSTOCK ITEMTYPELIST FINISHEVENT) [5]
16.0012:(SENDORDERSERVICE ORDERCODE FINISHEVENT
PACKAGECODE)[3]
16.0015: (UNLOCKSHUTTLESERVICE LOCKSHUTTLEFLAG
FINISHEVENT UNLOCKSHUTTLEFLAG) [2]
 Actions: 6 Execution cost: 6.00 Duration:19.000 Plan quality:19.000

Figure 7. Sequence of services of the second plan

The CM analyzes this new service composition.
Supposing that the service "querystorageservice" now has
a lower workload and needs 6 time units to complete his

task, the fulfillment of the goal can be accomplished on
time. Then, the CM establishes the pre-commitments with
the providers and analyzes the success probability, as
discussed in previous sections.

Finally, the CM consults the manager if it agrees with
the success probability. In that case, the CM formalizes
the commitments with providers and monitors service
executions.

6.3 Test and Results.

Several simulation experiments have been carried out
to monitor the behavior of system and evaluate the
incorporation of the CM into the SAES framework in
order to provide the client with feasible plans. The
experiments basically consist of launching a set of client
requests to the SAES, including the CM or not.

The points to be analyzed from the results obtained
after executing the tests are: (i) the number of client
requests that can be attended with a positive answer
(service composition) (ii) once the SAES provides a
suitable service composition, to check if the composition
provided has been carried out successfully.

In Figure 8 the behavior of the SAES, including the
CM or not, is compared. On this graph it can be seen that
SAES with the CM provides a lower number of answers
(service compositions) than the SAES without the CM.
The reason is that the SAES with CM rejects some of the
compositions provided by the Composer Service because
this configuration takes into account not only the
composition suitability but also the service provider
availability.

Figure 8. Number of service compositions provided by
SAES including the CM or not.

In Figure 9 the percentage of successfully accepted

plans, in both SAES configurations (with CM and without
it), is shown. This graph reflects that once the client has
accepted a service composition provided by SAES with

382

CM, the probability of service composition success is
higher than the SAES without the CM. Obviously, this is
because the CM first checks the providers’ current
availability.

Figure 9. Execution success of service compositions

provided by SAES including the CM or not.

7. Conclusions

Time in service execution is an important parameter to
consider in service composition, mainly in environments
where there are temporal constraints, such as
manufacturing systems. Execution time in many situations
is established by the providers in normal conditions.

This time estimation may not be realistic as it does not
consider workload or service availability at the moment
when a client request arrives. In this situation, taking a
non-functional time parameter in service descriptions in to
account is only useful for providing an initial service
compositions. If a service composition to be reliable this
information should be updated, bearing in mind the
current services conditions. It is necessary to contact
service providers and to query their availability and
workload at that moment. With this information, the
service compositions obtained are more accurate and their
probability of success is higher, so the quality improves.
In this paper a SAES (Search And Execution Services)
framework has been presented to deal with service
compositions and to ensure their fulfillment on time. The
different modules that compound SAES and their
functionality have been described in detail. Finally, this
work has been tested and evaluated by using a simulated
manufacturing scenario. The results obtained reflect the
benefits of the SAES framework in different
configurations.

8. References
[1] Erl, T.: SOA: Principles of Service Design. (2007)
[2] Fraser, R., Rankine, T., Woodcock, R.: Service oriented grid
architecture for geosciences community. In: ACSW '07:
Proceedings of the fifth Australasian symposium on ACSW

frontiers, Darlinghurst, Australia, Australia, Australian
Computer Society, Inc. (2007) 19—23
[3] Hayes, B.: Cloud computing. Commun. ACM 51(7) (2008)
[4] Consortium, W.W.W.: Owl-s: Semantic markup for web
services. http://www.w3.org/Submission/2004/SUBM-OWL-S-
20041122/
[5] Consortium, W.W.W.: Web service modeling ontology
(wsmo). http://www.w3.org/Submission/WSMO
[6] Consortium, W.W.W.: Web service semantics - wsdl-s.
http://www.w3.org/Submission/WSDL-S
[7] WSDL Working~Group, S.A.: Semantic annotations for
wsdl and xml schema. http://www.w3.org/TR/sawsdl
[8] Naseri, M., Towhidi, A. :Qos-aware automatic composition
of web services using ai planners. In: ICIW '07, (2007) ~29
[9] Solanki, M.: Tesco-s: A framework for defining temporal
semantics in owl enabled services. In: W3C Workshop on
Frameworks for Semantics in Web Services. (2005)
[10] Solanki, M., Cau, A., Zedan, H.: Augmenting semantic web
service description with compositional specification. In:
Proceedings of the 13th international World Wide Web
conference (WWW 2004). (2004) 544--52
[11] Benatallah, B., Hacid, M.S., Rey, C., Toumani, F.: Request
rewriting-based web service discovery. In: International
Semantic Web Conference. (2003) 242--257
[12] Hashemian, S., Mavaddat, F.: A graph-based approach to
web services composition. In IEEE Computer Society (2005)
[13] Gao, C., Liu, R., Song, Y., Chen, H.: A model checking
tool embedded into services composition environment. In:
Proceedings of the Fifth International Conference on Grid and
Cooperative Computing, IEEE Computer Society (2006)
[14] Walton, C.: Model checking multi-agent web services.
 In: Proceedings of the 2004 Spring Symposium on Semantic
Web Services, Stanford, CA, USA. (2004)
[15] Vukovic, M., Robinson, P.: Adaptive, planning based, web
service composition for context awareness. In: Advances in
Pervasive Computing. (2004) 247--252
[16] Carman, M., Serafini, L., PaoloTraverso: Web service
composition as planning. In: CAPS'03
[17] Rao, J., Su, X.: A survey of automated web service
composition methods (2005)
[18] Vukovic, M., Vukovic, C.M.: Context aware service
composition. Technical report (2006)
[19] Oh, S.C., Lee, D., Kumara, S.R.T.: A comparative
illustration of ai planning-based web services composition.
SIGecom Exch. 5(5) (2006) 1--10
[20] Fox, M., Long, D.: Pddl2.1: An extension to pddl for
expressing temporal planning domains. (JAIR) 20 (2003)
[21] Klusch, M., Gerber, A. :Semantic web service composition
planning with owls-xplan. In Proceedings of the 1st Int. AAAI
Fall Symposium on Agents and the Semantic Web. (2005)
[22] Liu, C.L., Layland, J.W.: scheduling algorithms for
multiprogramming in a hard-real-time environment. ACM
20(1) (1973) 46--61
[23] Burns, A., Wellings, A.: Advanced fixed priority
scheduling. J. Mathai (Ed.), Real-Time Systems (1996) 32--65
[24] Aamodt, A., Plaza, E.: Case-based reasoning; foundational
issues, methodological variations, and system approaches. AI
Comm.7(1) (1994) 39—59
[25] Marik, V., Vrba, P., Fletcher, M.: Agent-based simulation:
Mast case study. Emerging Solutions for Future Manufacturing
Systems (159) (2005) 61--72

383

